You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
65 lines
2.8 KiB
65 lines
2.8 KiB
"""Test augmentor class."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
from data_utils import audio
|
|
from data_utils.augmentor.augmentation import AugmentationPipeline
|
|
import random
|
|
import numpy as np
|
|
|
|
random_seed = 0
|
|
audio_data = [3.0517571e-05, -8.54492188e-04, -1.09863281e-03, -9.4604492e-04,\
|
|
-1.31225586e-03, -1.09863281e-03, -1.73950195e-03, -2.1057189e-03,\
|
|
-2.04467773e-03, -1.46484375e-03, -1.43432617e-03, -9.4604492e-04,\
|
|
-1.95312500e-03, -1.86157227e-03, -2.10571289e-03, -2.3193354e-03,\
|
|
-2.01416016e-03, -2.62451172e-03, -2.07519531e-03, -2.3803719e-03]
|
|
audio_data = np.array(audio_data)
|
|
samplerate = 10
|
|
|
|
|
|
class TestAugmentor(unittest.TestCase):
|
|
def test_volume(self):
|
|
config_json = '[{"type": "volume","params": {"min_gain_dBFS": -15, '\
|
|
'"max_gain_dBFS": 15},"prob": 1.0}]'
|
|
aug_pipeline = AugmentationPipeline(
|
|
augmentation_config=config_json, random_seed=random_seed)
|
|
audio_seg = audio.AudioSegment(audio_data, samplerate)
|
|
aug_pipeline.transform_audio(audio_seg)
|
|
orig_audio = audio.AudioSegment(audio_data, samplerate)
|
|
self.assertFalse(np.any(audio_seg.samples == orig_audio.samples))
|
|
|
|
def test_speed(self):
|
|
config_json = '[{"type":"speed","params": {"min_speed_rate": 1.2,' \
|
|
'"max_speed_rate": 1.4},"prob": 1.0}]'
|
|
aug_pipeline = AugmentationPipeline(
|
|
augmentation_config=config_json, random_seed=random_seed)
|
|
audio_seg = audio.AudioSegment(audio_data, samplerate)
|
|
aug_pipeline.transform_audio(audio_seg)
|
|
orig_audio = audio.AudioSegment(audio_data, samplerate)
|
|
self.assertFalse(np.any(audio_seg.samples == orig_audio.samples))
|
|
|
|
def test_resample(self):
|
|
config_json = '[{"type":"resample","params": {"new_sample_rate":5},'\
|
|
'"prob": 1.0}]'
|
|
aug_pipeline = AugmentationPipeline(
|
|
augmentation_config=config_json, random_seed=random_seed)
|
|
audio_seg = audio.AudioSegment(audio_data, samplerate)
|
|
aug_pipeline.transform_audio(audio_seg)
|
|
self.assertTrue(audio_seg.sample_rate == 5)
|
|
|
|
def test_bayesial(self):
|
|
config_json = '[{"type":"bayesian_normal","params":{"target_db":-20,' \
|
|
'"prior_db":-4, "prior_samples": -8, "startup_delay": 0.0},"prob":1.0}]'
|
|
aug_pipeline = AugmentationPipeline(
|
|
augmentation_config=config_json, random_seed=random_seed)
|
|
audio_seg = audio.AudioSegment(audio_data, samplerate)
|
|
aug_pipeline.transform_audio(audio_seg)
|
|
orig_audio = audio.AudioSegment(audio_data, samplerate)
|
|
self.assertFalse(np.any(audio_seg.samples == orig_audio.samples))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|