You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.5 KiB
186 lines
6.5 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import sys
|
|
|
|
from config import METRIC_TYPE
|
|
from config import MILVUS_HOST
|
|
from config import MILVUS_PORT
|
|
from config import VECTOR_DIMENSION
|
|
from logs import LOGGER
|
|
from pymilvus import Collection
|
|
from pymilvus import CollectionSchema
|
|
from pymilvus import connections
|
|
from pymilvus import DataType
|
|
from pymilvus import FieldSchema
|
|
from pymilvus import utility
|
|
|
|
|
|
class MilvusHelper:
|
|
"""
|
|
the basic operations of PyMilvus
|
|
|
|
# This example shows how to:
|
|
# 1. connect to Milvus server
|
|
# 2. create a collection
|
|
# 3. insert entities
|
|
# 4. create index
|
|
# 5. search
|
|
# 6. delete a collection
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
try:
|
|
self.collection = None
|
|
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
|
|
LOGGER.debug(
|
|
f"Successfully connect to Milvus with IP:{MILVUS_HOST} and PORT:{MILVUS_PORT}"
|
|
)
|
|
except Exception as e:
|
|
LOGGER.error(f"Failed to connect Milvus: {e}")
|
|
sys.exit(1)
|
|
|
|
def set_collection(self, collection_name):
|
|
try:
|
|
if self.has_collection(collection_name):
|
|
self.collection = Collection(name=collection_name)
|
|
else:
|
|
raise Exception(
|
|
f"There is no collection named:{collection_name}")
|
|
except Exception as e:
|
|
LOGGER.error(f"Failed to set collection in Milvus: {e}")
|
|
sys.exit(1)
|
|
|
|
def has_collection(self, collection_name):
|
|
# Return if Milvus has the collection
|
|
try:
|
|
return utility.has_collection(collection_name)
|
|
except Exception as e:
|
|
LOGGER.error(f"Failed to check state of collection in Milvus: {e}")
|
|
sys.exit(1)
|
|
|
|
def create_collection(self, collection_name):
|
|
# Create milvus collection if not exists
|
|
try:
|
|
if not self.has_collection(collection_name):
|
|
field1 = FieldSchema(
|
|
name="id",
|
|
dtype=DataType.INT64,
|
|
descrition="int64",
|
|
is_primary=True,
|
|
auto_id=True)
|
|
field2 = FieldSchema(
|
|
name="embedding",
|
|
dtype=DataType.FLOAT_VECTOR,
|
|
descrition="speaker embeddings",
|
|
dim=VECTOR_DIMENSION,
|
|
is_primary=False)
|
|
schema = CollectionSchema(
|
|
fields=[field1, field2], description="embeddings info")
|
|
self.collection = Collection(
|
|
name=collection_name, schema=schema)
|
|
LOGGER.debug(f"Create Milvus collection: {collection_name}")
|
|
else:
|
|
self.set_collection(collection_name)
|
|
return "OK"
|
|
except Exception as e:
|
|
LOGGER.error(f"Failed to create collection in Milvus: {e}")
|
|
sys.exit(1)
|
|
|
|
def insert(self, collection_name, vectors):
|
|
# Batch insert vectors to milvus collection
|
|
try:
|
|
self.create_collection(collection_name)
|
|
data = [vectors]
|
|
self.set_collection(collection_name)
|
|
mr = self.collection.insert(data)
|
|
ids = mr.primary_keys
|
|
self.collection.load()
|
|
LOGGER.debug(
|
|
f"Insert vectors to Milvus in collection: {collection_name} with {len(vectors)} rows"
|
|
)
|
|
return ids
|
|
except Exception as e:
|
|
LOGGER.error(f"Failed to insert data to Milvus: {e}")
|
|
sys.exit(1)
|
|
|
|
def create_index(self, collection_name):
|
|
# Create IVF_FLAT index on milvus collection
|
|
try:
|
|
self.set_collection(collection_name)
|
|
default_index = {
|
|
"index_type": "IVF_SQ8",
|
|
"metric_type": METRIC_TYPE,
|
|
"params": {
|
|
"nlist": 16384
|
|
}
|
|
}
|
|
status = self.collection.create_index(
|
|
field_name="embedding", index_params=default_index)
|
|
if not status.code:
|
|
LOGGER.debug(
|
|
f"Successfully create index in collection:{collection_name} with param:{default_index}"
|
|
)
|
|
return status
|
|
else:
|
|
raise Exception(status.message)
|
|
except Exception as e:
|
|
LOGGER.error(f"Failed to create index: {e}")
|
|
sys.exit(1)
|
|
|
|
def delete_collection(self, collection_name):
|
|
# Delete Milvus collection
|
|
try:
|
|
self.set_collection(collection_name)
|
|
self.collection.drop()
|
|
LOGGER.debug("Successfully drop collection!")
|
|
return "ok"
|
|
except Exception as e:
|
|
LOGGER.error(f"Failed to drop collection: {e}")
|
|
sys.exit(1)
|
|
|
|
def search_vectors(self, collection_name, vectors, top_k):
|
|
# Search vector in milvus collection
|
|
try:
|
|
self.set_collection(collection_name)
|
|
search_params = {
|
|
"metric_type": METRIC_TYPE,
|
|
"params": {
|
|
"nprobe": 16
|
|
}
|
|
}
|
|
res = self.collection.search(
|
|
vectors,
|
|
anns_field="embedding",
|
|
param=search_params,
|
|
limit=top_k)
|
|
LOGGER.debug(f"Successfully search in collection: {res}")
|
|
return res
|
|
except Exception as e:
|
|
LOGGER.error(f"Failed to search vectors in Milvus: {e}")
|
|
sys.exit(1)
|
|
|
|
def count(self, collection_name):
|
|
# Get the number of milvus collection
|
|
try:
|
|
self.set_collection(collection_name)
|
|
num = self.collection.num_entities
|
|
LOGGER.debug(
|
|
f"Successfully get the num:{num} of the collection:{collection_name}"
|
|
)
|
|
return num
|
|
except Exception as e:
|
|
LOGGER.error(f"Failed to count vectors in Milvus: {e}")
|
|
sys.exit(1)
|