You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/bin/paddlespeech_client.py

820 lines
30 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import asyncio
import base64
import io
import json
import os
import random
import sys
import time
import warnings
from typing import List
import numpy as np
import requests
import soundfile
from ..executor import BaseExecutor
from ..util import cli_client_register
from ..util import stats_wrapper
from paddlespeech.cli.log import logger
from paddlespeech.server.utils.audio_handler import ASRWsAudioHandler
from paddlespeech.server.utils.audio_process import wav2pcm
from paddlespeech.server.utils.util import compute_delay
from paddlespeech.server.utils.util import wav2base64
warnings.filterwarnings("ignore")
__all__ = [
'TTSClientExecutor', 'TTSOnlineClientExecutor', 'ASRClientExecutor',
'ASROnlineClientExecutor', 'CLSClientExecutor', 'VectorClientExecutor'
]
@cli_client_register(
name='paddlespeech_client.tts', description='visit tts service')
class TTSClientExecutor(BaseExecutor):
def __init__(self):
super(TTSClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.tts', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Text to be synthesized.',
required=True)
self.parser.add_argument(
'--spk_id', type=int, default=0, help='Speaker id')
self.parser.add_argument(
'--speed',
type=float,
default=1.0,
help='Audio speed, the value should be set between 0 and 3')
self.parser.add_argument(
'--volume',
type=float,
default=1.0,
help='Audio volume, the value should be set between 0 and 3')
self.parser.add_argument(
'--sample_rate',
type=int,
default=0,
choices=[0, 8000, 16000],
help='Sampling rate, the default is the same as the model')
self.parser.add_argument(
'--output', type=str, default=None, help='Synthesized audio file')
def postprocess(self, wav_base64: str, outfile: str) -> float:
audio_data_byte = base64.b64decode(wav_base64)
# from byte
samples, sample_rate = soundfile.read(
io.BytesIO(audio_data_byte), dtype='float32')
# transform audio
if outfile.endswith(".wav"):
soundfile.write(outfile, samples, sample_rate)
elif outfile.endswith(".pcm"):
temp_wav = str(random.getrandbits(128)) + ".wav"
soundfile.write(temp_wav, samples, sample_rate)
wav2pcm(temp_wav, outfile, data_type=np.int16)
os.remove(temp_wav)
else:
logger.error("The format for saving audio only supports wav or pcm")
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
spk_id = args.spk_id
speed = args.speed
volume = args.volume
sample_rate = args.sample_rate
output = args.output
try:
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
spk_id=spk_id,
speed=speed,
volume=volume,
sample_rate=sample_rate,
output=output)
time_end = time.time()
time_consume = time_end - time_start
response_dict = res.json()
logger.info("Save synthesized audio successfully on %s." % (output))
logger.info("Audio duration: %f s." %
(response_dict['result']['duration']))
logger.info("Response time: %f s." % (time_consume))
return True
except Exception as e:
logger.error("Failed to synthesized audio.")
logger.error(e)
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8090,
spk_id: int=0,
speed: float=1.0,
volume: float=1.0,
sample_rate: int=0,
output: str=None):
"""
Python API to call an executor.
"""
url = 'http://' + server_ip + ":" + str(port) + '/paddlespeech/tts'
request = {
"text": input,
"spk_id": spk_id,
"speed": speed,
"volume": volume,
"sample_rate": sample_rate,
"save_path": output
}
res = requests.post(url, json.dumps(request))
response_dict = res.json()
if output is not None:
self.postprocess(response_dict["result"]["audio"], output)
return res
@cli_client_register(
name='paddlespeech_client.tts_online',
description='visit tts online service')
class TTSOnlineClientExecutor(BaseExecutor):
def __init__(self):
super(TTSOnlineClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.tts_online', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8092, help='server port')
self.parser.add_argument(
'--protocol',
type=str,
default="http",
choices=["http", "websocket"],
help='server protocol')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Text to be synthesized.',
required=True)
self.parser.add_argument(
'--spk_id', type=int, default=0, help='Speaker id')
self.parser.add_argument(
'--output',
type=str,
default=None,
help='Client saves synthesized audio')
self.parser.add_argument(
"--play", type=bool, help="whether to play audio", default=False)
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
protocol = args.protocol
spk_id = args.spk_id
output = args.output
play = args.play
try:
self(
input=input_,
server_ip=server_ip,
port=port,
protocol=protocol,
spk_id=spk_id,
output=output,
play=play)
return True
except Exception as e:
logger.error("Failed to synthesized audio.")
logger.error(e)
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8092,
protocol: str="http",
spk_id: int=0,
output: str=None,
play: bool=False):
"""
Python API to call an executor.
"""
if protocol == "http":
logger.info("tts http client start")
from paddlespeech.server.utils.audio_handler import TTSHttpHandler
handler = TTSHttpHandler(server_ip, port, play)
first_response, final_response, duration, save_audio_success, receive_time_list, chunk_duration_list = handler.run(
input, spk_id, output)
delay_time_list = compute_delay(receive_time_list,
chunk_duration_list)
elif protocol == "websocket":
from paddlespeech.server.utils.audio_handler import TTSWsHandler
logger.info("tts websocket client start")
handler = TTSWsHandler(server_ip, port, play)
loop = asyncio.get_event_loop()
first_response, final_response, duration, save_audio_success, receive_time_list, chunk_duration_list = loop.run_until_complete(
handler.run(input, spk_id, output))
delay_time_list = compute_delay(receive_time_list,
chunk_duration_list)
else:
logger.error("Please set correct protocol, http or websocket")
sys.exit(-1)
logger.info(f"sentence: {input}")
logger.info(f"duration: {duration} s")
logger.info(f"first response: {first_response} s")
logger.info(f"final response: {final_response} s")
logger.info(f"RTF: {final_response/duration}")
if output is not None:
if save_audio_success:
logger.info(f"Audio successfully saved in {output}")
else:
logger.error("Audio save failed.")
if delay_time_list != []:
logger.info(
f"Delay situation: total number of packages: {len(receive_time_list)}, the number of delayed packets: {len(delay_time_list)}, minimum delay time: {min(delay_time_list)} s, maximum delay time: {max(delay_time_list)} s, average delay time: {sum(delay_time_list)/len(delay_time_list)} s, delay rate:{len(delay_time_list)/len(receive_time_list)}"
)
else:
logger.info("The sentence has no delay in streaming synthesis.")
@cli_client_register(
name='paddlespeech_client.asr', description='visit asr service')
class ASRClientExecutor(BaseExecutor):
def __init__(self):
super(ASRClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.asr', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Audio file to be recognized',
required=True)
self.parser.add_argument(
'--protocol',
type=str,
default="http",
choices=["http", "websocket"],
help='server protocol')
self.parser.add_argument(
'--sample_rate', type=int, default=16000, help='audio sample rate')
self.parser.add_argument(
'--lang', type=str, default="zh_cn", help='language')
self.parser.add_argument(
'--audio_format', type=str, default="wav", help='audio format')
self.parser.add_argument(
'--punc.server_ip',
type=str,
default=None,
dest="punc_server_ip",
help='Punctuation server ip')
self.parser.add_argument(
'--punc.port',
type=int,
default=8091,
dest="punc_server_port",
help='Punctuation server port')
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
sample_rate = args.sample_rate
lang = args.lang
audio_format = args.audio_format
protocol = args.protocol
try:
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
sample_rate=sample_rate,
lang=lang,
audio_format=audio_format,
protocol=protocol,
punc_server_ip=args.punc_server_ip,
punc_server_port=args.punc_server_port)
time_end = time.time()
logger.info(f"ASR result: {res}")
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to speech recognition.")
logger.error(e)
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8090,
sample_rate: int=16000,
lang: str="zh_cn",
audio_format: str="wav",
protocol: str="http",
punc_server_ip: str=None,
punc_server_port: int=None):
"""Python API to call an executor.
Args:
input (str): The input audio file path
server_ip (str, optional): The ASR server ip. Defaults to "127.0.0.1".
port (int, optional): The ASR server port. Defaults to 8090.
sample_rate (int, optional): The audio sample rate. Defaults to 16000.
lang (str, optional): The audio language type. Defaults to "zh_cn".
audio_format (str, optional): The audio format information. Defaults to "wav".
protocol (str, optional): The ASR server. Defaults to "http".
Returns:
str: The ASR results
"""
# we use the asr server to recognize the audio text content
# and paddlespeech_client asr only support http protocol
protocol = "http"
if protocol.lower() == "http":
from paddlespeech.server.utils.audio_handler import ASRHttpHandler
logger.info("asr http client start")
handler = ASRHttpHandler(server_ip=server_ip, port=port)
res = handler.run(input, audio_format, sample_rate, lang)
res = res['result']['transcription']
logger.info("asr http client finished")
else:
logger.error(f"Sorry, we have not support protocol: {protocol},"
"please use http or websocket protocol")
sys.exit(-1)
return res
@cli_client_register(
name='paddlespeech_client.asr_online',
description='visit asr online service')
class ASROnlineClientExecutor(BaseExecutor):
def __init__(self):
super(ASROnlineClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.asr_online', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8091, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Audio file to be recognized',
required=True)
self.parser.add_argument(
'--sample_rate', type=int, default=16000, help='audio sample rate')
self.parser.add_argument(
'--lang', type=str, default="zh_cn", help='language')
self.parser.add_argument(
'--audio_format', type=str, default="wav", help='audio format')
self.parser.add_argument(
'--punc.server_ip',
type=str,
default=None,
dest="punc_server_ip",
help='Punctuation server ip')
self.parser.add_argument(
'--punc.port',
type=int,
default=8190,
dest="punc_server_port",
help='Punctuation server port')
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
sample_rate = args.sample_rate
lang = args.lang
audio_format = args.audio_format
try:
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
sample_rate=sample_rate,
lang=lang,
audio_format=audio_format,
punc_server_ip=args.punc_server_ip,
punc_server_port=args.punc_server_port)
time_end = time.time()
logger.info(res)
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to speech recognition.")
logger.error(e)
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8091,
sample_rate: int=16000,
lang: str="zh_cn",
audio_format: str="wav",
punc_server_ip: str=None,
punc_server_port: str=None):
"""Python API to call asr online executor.
Args:
input (str): the audio file to be send to streaming asr service.
server_ip (str, optional): streaming asr server ip. Defaults to "127.0.0.1".
port (int, optional): streaming asr server port. Defaults to 8091.
sample_rate (int, optional): audio sample rate. Defaults to 16000.
lang (str, optional): audio language type. Defaults to "zh_cn".
audio_format (str, optional): audio format. Defaults to "wav".
punc_server_ip (str, optional): punctuation server ip. Defaults to None.
punc_server_port (str, optional): punctuation server port. Defaults to None.
Returns:
str: the audio text
"""
logger.info("asr websocket client start")
handler = ASRWsAudioHandler(
server_ip,
port,
punc_server_ip=punc_server_ip,
punc_server_port=punc_server_port)
loop = asyncio.get_event_loop()
res = loop.run_until_complete(handler.run(input))
logger.info("asr websocket client finished")
return res['result']
@cli_client_register(
name='paddlespeech_client.cls', description='visit cls service')
class CLSClientExecutor(BaseExecutor):
def __init__(self):
super(CLSClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.cls', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Audio file to classify.',
required=True)
self.parser.add_argument(
'--topk',
type=int,
default=1,
help='Return topk scores of classification result.')
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
topk = args.topk
try:
time_start = time.time()
res = self(input=input_, server_ip=server_ip, port=port, topk=topk)
time_end = time.time()
logger.info(res.json())
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to speech classification.")
logger.error(e)
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8090,
topk: int=1):
"""
Python API to call an executor.
"""
url = 'http://' + server_ip + ":" + str(port) + '/paddlespeech/cls'
audio = wav2base64(input)
data = {"audio": audio, "topk": topk}
res = requests.post(url=url, data=json.dumps(data))
return res
@cli_client_register(
name='paddlespeech_client.text', description='visit the text service')
class TextClientExecutor(BaseExecutor):
def __init__(self):
super(TextClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.text', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='sentence to be process by text server.',
required=True)
def execute(self, argv: List[str]) -> bool:
"""Execute the request from the argv.
Args:
argv (List): the request arguments
Returns:
str: the request flag
"""
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
try:
time_start = time.time()
res = self(input=input_, server_ip=server_ip, port=port)
time_end = time.time()
logger.info(f"The punc text: {res}")
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to Text punctuation.")
return False
@stats_wrapper
def __call__(self, input: str, server_ip: str="127.0.0.1", port: int=8090):
"""
Python API to call text executor.
Args:
input (str): the request sentence text
server_ip (str, optional): the server ip. Defaults to "127.0.0.1".
port (int, optional): the server port. Defaults to 8090.
Returns:
str: the punctuation text
"""
url = 'http://' + server_ip + ":" + str(port) + '/paddlespeech/text'
request = {
"text": input,
}
res = requests.post(url=url, data=json.dumps(request))
response_dict = res.json()
punc_text = response_dict["result"]["punc_text"]
return punc_text
@cli_client_register(
name='paddlespeech_client.vector', description='visit the vector service')
class VectorClientExecutor(BaseExecutor):
def __init__(self):
super(VectorClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.vector', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='sentence to be process by text server.')
self.parser.add_argument(
'--task',
type=str,
default="spk",
choices=["spk", "score"],
help="The vector service task")
self.parser.add_argument(
"--enroll", type=str, default=None, help="The enroll audio")
self.parser.add_argument(
"--test", type=str, default=None, help="The test audio")
def execute(self, argv: List[str]) -> bool:
"""Execute the request from the argv.
Args:
argv (List): the request arguments
Returns:
str: the request flag
"""
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
task = args.task
try:
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
enroll_audio=args.enroll,
test_audio=args.test,
task=task)
time_end = time.time()
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to extract vector.")
logger.error(e)
return False
@stats_wrapper
def __call__(self,
input: str,
server_ip: str="127.0.0.1",
port: int=8090,
audio_format: str="wav",
sample_rate: int=16000,
enroll_audio: str=None,
test_audio: str=None,
task="spk"):
"""
Python API to call text executor.
Args:
input (str): the request audio data
server_ip (str, optional): the server ip. Defaults to "127.0.0.1".
port (int, optional): the server port. Defaults to 8090.
audio_format (str, optional): audio format. Defaults to "wav".
sample_rate (str, optional): audio sample rate. Defaults to 16000.
enroll_audio (str, optional): enroll audio data. Defaults to None.
test_audio (str, optional): test audio data. Defaults to None.
task (str, optional): the task type, "spk" or "socre". Defaults to "spk"
Returns:
str: the audio embedding or score between enroll and test audio
"""
if task == "spk":
from paddlespeech.server.utils.audio_handler import VectorHttpHandler
logger.info("vector http client start")
logger.info(f"the input audio: {input}")
handler = VectorHttpHandler(server_ip=server_ip, port=port)
res = handler.run(input, audio_format, sample_rate)
logger.info(f"The spk embedding is: {res}")
return res
elif task == "score":
from paddlespeech.server.utils.audio_handler import VectorScoreHttpHandler
logger.info("vector score http client start")
logger.info(
f"enroll audio: {enroll_audio}, test audio: {test_audio}")
handler = VectorScoreHttpHandler(server_ip=server_ip, port=port)
res = handler.run(enroll_audio, test_audio, audio_format,
sample_rate)
logger.info(f"The vector score is: {res}")
return res
else:
logger.error(f"Sorry, we have not support such task {task}")
@cli_client_register(
name='paddlespeech_client.acs', description='visit acs service')
class ACSClientExecutor(BaseExecutor):
def __init__(self):
super(ACSClientExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog='paddlespeech_client.acs', add_help=True)
self.parser.add_argument(
'--server_ip', type=str, default='127.0.0.1', help='server ip')
self.parser.add_argument(
'--port', type=int, default=8090, help='server port')
self.parser.add_argument(
'--input',
type=str,
default=None,
help='Audio file to be recognized',
required=True)
self.parser.add_argument(
'--sample_rate', type=int, default=16000, help='audio sample rate')
self.parser.add_argument(
'--lang', type=str, default="zh_cn", help='language')
self.parser.add_argument(
'--audio_format', type=str, default="wav", help='audio format')
def execute(self, argv: List[str]) -> bool:
args = self.parser.parse_args(argv)
input_ = args.input
server_ip = args.server_ip
port = args.port
sample_rate = args.sample_rate
lang = args.lang
audio_format = args.audio_format
try:
time_start = time.time()
res = self(
input=input_,
server_ip=server_ip,
port=port,
sample_rate=sample_rate,
lang=lang,
audio_format=audio_format, )
time_end = time.time()
logger.info(f"ACS result: {res}")
logger.info("Response time %f s." % (time_end - time_start))
return True
except Exception as e:
logger.error("Failed to speech recognition.")
logger.error(e)
return False
@stats_wrapper
def __call__(
self,
input: str,
server_ip: str="127.0.0.1",
port: int=8090,
sample_rate: int=16000,
lang: str="zh_cn",
audio_format: str="wav", ):
"""Python API to call an executor.
Args:
input (str): The input audio file path
server_ip (str, optional): The ASR server ip. Defaults to "127.0.0.1".
port (int, optional): The ASR server port. Defaults to 8090.
sample_rate (int, optional): The audio sample rate. Defaults to 16000.
lang (str, optional): The audio language type. Defaults to "zh_cn".
audio_format (str, optional): The audio format information. Defaults to "wav".
Returns:
str: The ACS results
"""
# we use the acs server to get the key word time stamp in audio text content
logger.info("acs http client start")
from paddlespeech.server.utils.audio_handler import ASRHttpHandler
handler = ASRHttpHandler(
server_ip=server_ip, port=port, endpoint="/paddlespeech/asr/search")
res = handler.run(input, audio_format, sample_rate, lang)
res = res['result']
logger.info("acs http client finished")
return res