You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/tacotron2/tacotron2_updater.py

224 lines
8.4 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from pathlib import Path
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.nn import Layer
from paddle.optimizer import Optimizer
from paddlespeech.t2s.modules.losses import GuidedAttentionLoss
from paddlespeech.t2s.modules.losses import Tacotron2Loss
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
from paddlespeech.t2s.training.reporter import report
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
logging.basicConfig(
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='[%Y-%m-%d %H:%M:%S]')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class Tacotron2Updater(StandardUpdater):
def __init__(self,
model: Layer,
optimizer: Optimizer,
dataloader: DataLoader,
init_state=None,
use_masking: bool=True,
use_weighted_masking: bool=False,
bce_pos_weight: float=5.0,
loss_type: str="L1+L2",
use_guided_attn_loss: bool=True,
guided_attn_loss_sigma: float=0.4,
guided_attn_loss_lambda: float=1.0,
output_dir: Path=None):
super().__init__(model, optimizer, dataloader, init_state=None)
self.loss_type = loss_type
self.use_guided_attn_loss = use_guided_attn_loss
self.taco2_loss = Tacotron2Loss(
use_masking=use_masking,
use_weighted_masking=use_weighted_masking,
bce_pos_weight=bce_pos_weight, )
if self.use_guided_attn_loss:
self.attn_loss = GuidedAttentionLoss(
sigma=guided_attn_loss_sigma,
alpha=guided_attn_loss_lambda, )
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def update_core(self, batch):
self.msg = "Rank: {}, ".format(dist.get_rank())
losses_dict = {}
# spk_id!=None in multiple spk fastspeech2
spk_id = batch["spk_id"] if "spk_id" in batch else None
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
if spk_emb is not None:
spk_id = None
after_outs, before_outs, logits, ys, stop_labels, olens, att_ws, olens_in = self.model(
text=batch["text"],
text_lengths=batch["text_lengths"],
speech=batch["speech"],
speech_lengths=batch["speech_lengths"],
spk_id=spk_id,
spk_emb=spk_emb)
# calculate taco2 loss
l1_loss, mse_loss, bce_loss = self.taco2_loss(
after_outs=after_outs,
before_outs=before_outs,
logits=logits,
ys=ys,
stop_labels=stop_labels,
olens=olens)
if self.loss_type == "L1+L2":
loss = l1_loss + mse_loss + bce_loss
elif self.loss_type == "L1":
loss = l1_loss + bce_loss
elif self.loss_type == "L2":
loss = mse_loss + bce_loss
else:
raise ValueError(f"unknown --loss-type {self.loss_type}")
# calculate attention loss
if self.use_guided_attn_loss:
# NOTE: length of output for auto-regressive
# input will be changed when r > 1
attn_loss = self.attn_loss(
att_ws=att_ws, ilens=batch["text_lengths"] + 1, olens=olens_in)
loss = loss + attn_loss
optimizer = self.optimizer
optimizer.clear_grad()
loss.backward()
optimizer.step()
if self.use_guided_attn_loss:
report("train/attn_loss", float(attn_loss))
losses_dict["attn_loss"] = float(attn_loss)
report("train/l1_loss", float(l1_loss))
report("train/mse_loss", float(mse_loss))
report("train/bce_loss", float(bce_loss))
report("train/loss", float(loss))
losses_dict["l1_loss"] = float(l1_loss)
losses_dict["mse_loss"] = float(mse_loss)
losses_dict["bce_loss"] = float(bce_loss)
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
class Tacotron2Evaluator(StandardEvaluator):
def __init__(self,
model: Layer,
dataloader: DataLoader,
use_masking: bool=True,
use_weighted_masking: bool=False,
bce_pos_weight: float=5.0,
loss_type: str="L1+L2",
use_guided_attn_loss: bool=True,
guided_attn_loss_sigma: float=0.4,
guided_attn_loss_lambda: float=1.0,
output_dir=None):
super().__init__(model, dataloader)
self.loss_type = loss_type
self.use_guided_attn_loss = use_guided_attn_loss
self.taco2_loss = Tacotron2Loss(
use_masking=use_masking,
use_weighted_masking=use_weighted_masking,
bce_pos_weight=bce_pos_weight, )
if self.use_guided_attn_loss:
self.attn_loss = GuidedAttentionLoss(
sigma=guided_attn_loss_sigma,
alpha=guided_attn_loss_lambda, )
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def evaluate_core(self, batch):
self.msg = "Evaluate: "
losses_dict = {}
# spk_id!=None in multiple spk fastspeech2
spk_id = batch["spk_id"] if "spk_id" in batch else None
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
if spk_emb is not None:
spk_id = None
after_outs, before_outs, logits, ys, stop_labels, olens, att_ws, olens_in = self.model(
text=batch["text"],
text_lengths=batch["text_lengths"],
speech=batch["speech"],
speech_lengths=batch["speech_lengths"],
spk_id=spk_id,
spk_emb=spk_emb)
# calculate taco2 loss
l1_loss, mse_loss, bce_loss = self.taco2_loss(
after_outs=after_outs,
before_outs=before_outs,
logits=logits,
ys=ys,
stop_labels=stop_labels,
olens=olens)
if self.loss_type == "L1+L2":
loss = l1_loss + mse_loss + bce_loss
elif self.loss_type == "L1":
loss = l1_loss + bce_loss
elif self.loss_type == "L2":
loss = mse_loss + bce_loss
else:
raise ValueError(f"unknown --loss-type {self.loss_type}")
# calculate attention loss
if self.use_guided_attn_loss:
# NOTE: length of output for auto-regressive
# input will be changed when r > 1
attn_loss = self.attn_loss(
att_ws=att_ws, ilens=batch["text_lengths"] + 1, olens=olens_in)
loss = loss + attn_loss
if self.use_guided_attn_loss:
report("eval/attn_loss", float(attn_loss))
losses_dict["attn_loss"] = float(attn_loss)
report("eval/l1_loss", float(l1_loss))
report("eval/mse_loss", float(mse_loss))
report("eval/bce_loss", float(bce_loss))
report("eval/loss", float(loss))
losses_dict["l1_loss"] = float(l1_loss)
losses_dict["mse_loss"] = float(mse_loss)
losses_dict["bce_loss"] = float(bce_loss)
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
self.logger.info(self.msg)