You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
8.4 KiB
224 lines
8.4 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
from paddle import distributed as dist
|
|
from paddle.io import DataLoader
|
|
from paddle.nn import Layer
|
|
from paddle.optimizer import Optimizer
|
|
|
|
from paddlespeech.t2s.modules.losses import GuidedAttentionLoss
|
|
from paddlespeech.t2s.modules.losses import Tacotron2Loss
|
|
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
|
|
from paddlespeech.t2s.training.reporter import report
|
|
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
|
|
logging.basicConfig(
|
|
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
|
datefmt='[%Y-%m-%d %H:%M:%S]')
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
class Tacotron2Updater(StandardUpdater):
|
|
def __init__(self,
|
|
model: Layer,
|
|
optimizer: Optimizer,
|
|
dataloader: DataLoader,
|
|
init_state=None,
|
|
use_masking: bool=True,
|
|
use_weighted_masking: bool=False,
|
|
bce_pos_weight: float=5.0,
|
|
loss_type: str="L1+L2",
|
|
use_guided_attn_loss: bool=True,
|
|
guided_attn_loss_sigma: float=0.4,
|
|
guided_attn_loss_lambda: float=1.0,
|
|
output_dir: Path=None):
|
|
super().__init__(model, optimizer, dataloader, init_state=None)
|
|
|
|
self.loss_type = loss_type
|
|
self.use_guided_attn_loss = use_guided_attn_loss
|
|
|
|
self.taco2_loss = Tacotron2Loss(
|
|
use_masking=use_masking,
|
|
use_weighted_masking=use_weighted_masking,
|
|
bce_pos_weight=bce_pos_weight, )
|
|
if self.use_guided_attn_loss:
|
|
self.attn_loss = GuidedAttentionLoss(
|
|
sigma=guided_attn_loss_sigma,
|
|
alpha=guided_attn_loss_lambda, )
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
logger.addHandler(self.filehandler)
|
|
self.logger = logger
|
|
self.msg = ""
|
|
|
|
def update_core(self, batch):
|
|
self.msg = "Rank: {}, ".format(dist.get_rank())
|
|
losses_dict = {}
|
|
# spk_id!=None in multiple spk fastspeech2
|
|
spk_id = batch["spk_id"] if "spk_id" in batch else None
|
|
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
|
|
if spk_emb is not None:
|
|
spk_id = None
|
|
|
|
after_outs, before_outs, logits, ys, stop_labels, olens, att_ws, olens_in = self.model(
|
|
text=batch["text"],
|
|
text_lengths=batch["text_lengths"],
|
|
speech=batch["speech"],
|
|
speech_lengths=batch["speech_lengths"],
|
|
spk_id=spk_id,
|
|
spk_emb=spk_emb)
|
|
|
|
# calculate taco2 loss
|
|
l1_loss, mse_loss, bce_loss = self.taco2_loss(
|
|
after_outs=after_outs,
|
|
before_outs=before_outs,
|
|
logits=logits,
|
|
ys=ys,
|
|
stop_labels=stop_labels,
|
|
olens=olens)
|
|
|
|
if self.loss_type == "L1+L2":
|
|
loss = l1_loss + mse_loss + bce_loss
|
|
elif self.loss_type == "L1":
|
|
loss = l1_loss + bce_loss
|
|
elif self.loss_type == "L2":
|
|
loss = mse_loss + bce_loss
|
|
else:
|
|
raise ValueError(f"unknown --loss-type {self.loss_type}")
|
|
|
|
# calculate attention loss
|
|
if self.use_guided_attn_loss:
|
|
# NOTE: length of output for auto-regressive
|
|
# input will be changed when r > 1
|
|
attn_loss = self.attn_loss(
|
|
att_ws=att_ws, ilens=batch["text_lengths"] + 1, olens=olens_in)
|
|
loss = loss + attn_loss
|
|
|
|
optimizer = self.optimizer
|
|
optimizer.clear_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
if self.use_guided_attn_loss:
|
|
report("train/attn_loss", float(attn_loss))
|
|
losses_dict["attn_loss"] = float(attn_loss)
|
|
|
|
report("train/l1_loss", float(l1_loss))
|
|
report("train/mse_loss", float(mse_loss))
|
|
report("train/bce_loss", float(bce_loss))
|
|
report("train/loss", float(loss))
|
|
|
|
losses_dict["l1_loss"] = float(l1_loss)
|
|
losses_dict["mse_loss"] = float(mse_loss)
|
|
losses_dict["bce_loss"] = float(bce_loss)
|
|
losses_dict["loss"] = float(loss)
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_dict.items())
|
|
|
|
|
|
class Tacotron2Evaluator(StandardEvaluator):
|
|
def __init__(self,
|
|
model: Layer,
|
|
dataloader: DataLoader,
|
|
use_masking: bool=True,
|
|
use_weighted_masking: bool=False,
|
|
bce_pos_weight: float=5.0,
|
|
loss_type: str="L1+L2",
|
|
use_guided_attn_loss: bool=True,
|
|
guided_attn_loss_sigma: float=0.4,
|
|
guided_attn_loss_lambda: float=1.0,
|
|
output_dir=None):
|
|
super().__init__(model, dataloader)
|
|
|
|
self.loss_type = loss_type
|
|
self.use_guided_attn_loss = use_guided_attn_loss
|
|
|
|
self.taco2_loss = Tacotron2Loss(
|
|
use_masking=use_masking,
|
|
use_weighted_masking=use_weighted_masking,
|
|
bce_pos_weight=bce_pos_weight, )
|
|
if self.use_guided_attn_loss:
|
|
self.attn_loss = GuidedAttentionLoss(
|
|
sigma=guided_attn_loss_sigma,
|
|
alpha=guided_attn_loss_lambda, )
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
logger.addHandler(self.filehandler)
|
|
self.logger = logger
|
|
self.msg = ""
|
|
|
|
def evaluate_core(self, batch):
|
|
self.msg = "Evaluate: "
|
|
losses_dict = {}
|
|
# spk_id!=None in multiple spk fastspeech2
|
|
spk_id = batch["spk_id"] if "spk_id" in batch else None
|
|
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
|
|
if spk_emb is not None:
|
|
spk_id = None
|
|
|
|
after_outs, before_outs, logits, ys, stop_labels, olens, att_ws, olens_in = self.model(
|
|
text=batch["text"],
|
|
text_lengths=batch["text_lengths"],
|
|
speech=batch["speech"],
|
|
speech_lengths=batch["speech_lengths"],
|
|
spk_id=spk_id,
|
|
spk_emb=spk_emb)
|
|
|
|
# calculate taco2 loss
|
|
l1_loss, mse_loss, bce_loss = self.taco2_loss(
|
|
after_outs=after_outs,
|
|
before_outs=before_outs,
|
|
logits=logits,
|
|
ys=ys,
|
|
stop_labels=stop_labels,
|
|
olens=olens)
|
|
|
|
if self.loss_type == "L1+L2":
|
|
loss = l1_loss + mse_loss + bce_loss
|
|
elif self.loss_type == "L1":
|
|
loss = l1_loss + bce_loss
|
|
elif self.loss_type == "L2":
|
|
loss = mse_loss + bce_loss
|
|
else:
|
|
raise ValueError(f"unknown --loss-type {self.loss_type}")
|
|
|
|
# calculate attention loss
|
|
if self.use_guided_attn_loss:
|
|
# NOTE: length of output for auto-regressive
|
|
# input will be changed when r > 1
|
|
attn_loss = self.attn_loss(
|
|
att_ws=att_ws, ilens=batch["text_lengths"] + 1, olens=olens_in)
|
|
loss = loss + attn_loss
|
|
|
|
if self.use_guided_attn_loss:
|
|
report("eval/attn_loss", float(attn_loss))
|
|
losses_dict["attn_loss"] = float(attn_loss)
|
|
|
|
report("eval/l1_loss", float(l1_loss))
|
|
report("eval/mse_loss", float(mse_loss))
|
|
report("eval/bce_loss", float(bce_loss))
|
|
report("eval/loss", float(loss))
|
|
|
|
losses_dict["l1_loss"] = float(l1_loss)
|
|
losses_dict["mse_loss"] = float(mse_loss)
|
|
losses_dict["bce_loss"] = float(bce_loss)
|
|
losses_dict["loss"] = float(loss)
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_dict.items())
|
|
self.logger.info(self.msg)
|