You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
6.6 KiB
190 lines
6.6 KiB
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Normalize feature files and dump them."""
|
|
import argparse
|
|
import logging
|
|
from operator import itemgetter
|
|
from pathlib import Path
|
|
|
|
import jsonlines
|
|
import numpy as np
|
|
from sklearn.preprocessing import StandardScaler
|
|
from tqdm import tqdm
|
|
|
|
from paddlespeech.t2s.datasets.data_table import DataTable
|
|
from paddlespeech.t2s.utils import str2bool
|
|
|
|
|
|
def main():
|
|
"""Run preprocessing process."""
|
|
parser = argparse.ArgumentParser(
|
|
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
|
|
)
|
|
parser.add_argument(
|
|
"--metadata",
|
|
type=str,
|
|
required=True,
|
|
help="directory including feature files to be normalized. "
|
|
"you need to specify either *-scp or rootdir.")
|
|
|
|
parser.add_argument(
|
|
"--dumpdir",
|
|
type=str,
|
|
required=True,
|
|
help="directory to dump normalized feature files.")
|
|
parser.add_argument(
|
|
"--speech-stats",
|
|
type=str,
|
|
required=True,
|
|
help="speech statistics file.")
|
|
parser.add_argument(
|
|
"--pitch-stats", type=str, required=True, help="pitch statistics file.")
|
|
parser.add_argument(
|
|
"--energy-stats",
|
|
type=str,
|
|
required=True,
|
|
help="energy statistics file.")
|
|
parser.add_argument(
|
|
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
|
|
parser.add_argument(
|
|
"--speaker-dict", type=str, default=None, help="speaker id map file.")
|
|
parser.add_argument(
|
|
"--norm-feats",
|
|
type=str2bool,
|
|
default=False,
|
|
help="whether to norm features")
|
|
|
|
args = parser.parse_args()
|
|
|
|
dumpdir = Path(args.dumpdir).expanduser()
|
|
# use absolute path
|
|
dumpdir = dumpdir.resolve()
|
|
dumpdir.mkdir(parents=True, exist_ok=True)
|
|
|
|
# get dataset
|
|
with jsonlines.open(args.metadata, 'r') as reader:
|
|
metadata = list(reader)
|
|
dataset = DataTable(
|
|
metadata,
|
|
converters={
|
|
"speech": np.load,
|
|
"pitch": np.load,
|
|
"energy": np.load,
|
|
})
|
|
logging.info(f"The number of files = {len(dataset)}.")
|
|
|
|
# restore scaler
|
|
speech_scaler = StandardScaler()
|
|
if args.norm_feats:
|
|
speech_scaler.mean_ = np.load(args.speech_stats)[0]
|
|
speech_scaler.scale_ = np.load(args.speech_stats)[1]
|
|
else:
|
|
speech_scaler.mean_ = np.zeros(
|
|
np.load(args.speech_stats)[0].shape, dtype="float32")
|
|
speech_scaler.scale_ = np.ones(
|
|
np.load(args.speech_stats)[1].shape, dtype="float32")
|
|
speech_scaler.n_features_in_ = speech_scaler.mean_.shape[0]
|
|
|
|
pitch_scaler = StandardScaler()
|
|
if args.norm_feats:
|
|
pitch_scaler.mean_ = np.load(args.pitch_stats)[0]
|
|
pitch_scaler.scale_ = np.load(args.pitch_stats)[1]
|
|
else:
|
|
pitch_scaler.mean_ = np.zeros(
|
|
np.load(args.pitch_stats)[0].shape, dtype="float32")
|
|
pitch_scaler.scale_ = np.ones(
|
|
np.load(args.pitch_stats)[1].shape, dtype="float32")
|
|
pitch_scaler.n_features_in_ = pitch_scaler.mean_.shape[0]
|
|
|
|
energy_scaler = StandardScaler()
|
|
if args.norm_feats:
|
|
energy_scaler.mean_ = np.load(args.energy_stats)[0]
|
|
energy_scaler.scale_ = np.load(args.energy_stats)[1]
|
|
else:
|
|
energy_scaler.mean_ = np.zeros(
|
|
np.load(args.energy_stats)[0].shape, dtype="float32")
|
|
energy_scaler.scale_ = np.ones(
|
|
np.load(args.energy_stats)[1].shape, dtype="float32")
|
|
energy_scaler.n_features_in_ = energy_scaler.mean_.shape[0]
|
|
|
|
vocab_phones = {}
|
|
with open(args.phones_dict, 'rt') as f:
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
for phn, id in phn_id:
|
|
vocab_phones[phn] = int(id)
|
|
|
|
vocab_speaker = {}
|
|
with open(args.speaker_dict, 'rt') as f:
|
|
spk_id = [line.strip().split() for line in f.readlines()]
|
|
for spk, id in spk_id:
|
|
vocab_speaker[spk] = int(id)
|
|
|
|
# process each file
|
|
output_metadata = []
|
|
|
|
for item in tqdm(dataset):
|
|
utt_id = item['utt_id']
|
|
speech = item['speech']
|
|
pitch = item['pitch']
|
|
energy = item['energy']
|
|
# normalize
|
|
speech = speech_scaler.transform(speech)
|
|
speech_dir = dumpdir / "data_speech"
|
|
speech_dir.mkdir(parents=True, exist_ok=True)
|
|
speech_path = speech_dir / f"{utt_id}_speech.npy"
|
|
np.save(speech_path, speech.astype(np.float32), allow_pickle=False)
|
|
|
|
pitch = pitch_scaler.transform(pitch)
|
|
pitch_dir = dumpdir / "data_pitch"
|
|
pitch_dir.mkdir(parents=True, exist_ok=True)
|
|
pitch_path = pitch_dir / f"{utt_id}_pitch.npy"
|
|
np.save(pitch_path, pitch.astype(np.float32), allow_pickle=False)
|
|
|
|
energy = energy_scaler.transform(energy)
|
|
energy_dir = dumpdir / "data_energy"
|
|
energy_dir.mkdir(parents=True, exist_ok=True)
|
|
energy_path = energy_dir / f"{utt_id}_energy.npy"
|
|
np.save(energy_path, energy.astype(np.float32), allow_pickle=False)
|
|
phone_ids = [vocab_phones[p] for p in item['phones']]
|
|
spk_id = vocab_speaker[item["speaker"]]
|
|
record = {
|
|
"utt_id": item['utt_id'],
|
|
"spk_id": spk_id,
|
|
"text": phone_ids,
|
|
"text_lengths": item['text_lengths'],
|
|
"speech_lengths": item['speech_lengths'],
|
|
"durations": item['durations'],
|
|
"speech": str(speech_path),
|
|
"pitch": str(pitch_path),
|
|
"energy": str(energy_path),
|
|
"note": item['note'],
|
|
"note_dur": item['note_dur'],
|
|
"is_slur": item['is_slur'],
|
|
}
|
|
# add spk_emb for voice cloning
|
|
if "spk_emb" in item:
|
|
record["spk_emb"] = str(item["spk_emb"])
|
|
|
|
output_metadata.append(record)
|
|
output_metadata.sort(key=itemgetter('utt_id'))
|
|
output_metadata_path = Path(args.dumpdir) / "metadata.jsonl"
|
|
with jsonlines.open(output_metadata_path, 'w') as writer:
|
|
for item in output_metadata:
|
|
writer.write(item)
|
|
logging.info(f"metadata dumped into {output_metadata_path}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|