You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
119 lines
4.3 KiB
119 lines
4.3 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional
|
|
|
|
from paddle.io import Dataset
|
|
from yacs.config import CfgNode
|
|
|
|
from deepspeech.frontend.utility import read_manifest
|
|
from deepspeech.utils.log import Log
|
|
|
|
__all__ = ["ManifestDataset", "TripletManifestDataset"]
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
class ManifestDataset(Dataset):
|
|
@classmethod
|
|
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
|
|
default = CfgNode(
|
|
dict(
|
|
manifest="",
|
|
max_input_len=27.0,
|
|
min_input_len=0.0,
|
|
max_output_len=float('inf'),
|
|
min_output_len=0.0,
|
|
max_output_input_ratio=float('inf'),
|
|
min_output_input_ratio=0.0, ))
|
|
|
|
if config is not None:
|
|
config.merge_from_other_cfg(default)
|
|
return default
|
|
|
|
@classmethod
|
|
def from_config(cls, config):
|
|
"""Build a ManifestDataset object from a config.
|
|
|
|
Args:
|
|
config (yacs.config.CfgNode): configs object.
|
|
|
|
Returns:
|
|
ManifestDataset: dataet object.
|
|
"""
|
|
assert 'manifest' in config.data
|
|
assert config.data.manifest
|
|
|
|
dataset = cls(
|
|
manifest_path=config.data.manifest,
|
|
max_input_len=config.data.max_input_len,
|
|
min_input_len=config.data.min_input_len,
|
|
max_output_len=config.data.max_output_len,
|
|
min_output_len=config.data.min_output_len,
|
|
max_output_input_ratio=config.data.max_output_input_ratio,
|
|
min_output_input_ratio=config.data.min_output_input_ratio, )
|
|
return dataset
|
|
|
|
def __init__(self,
|
|
manifest_path,
|
|
max_input_len=float('inf'),
|
|
min_input_len=0.0,
|
|
max_output_len=float('inf'),
|
|
min_output_len=0.0,
|
|
max_output_input_ratio=float('inf'),
|
|
min_output_input_ratio=0.0):
|
|
"""Manifest Dataset
|
|
|
|
Args:
|
|
manifest_path (str): manifest josn file path
|
|
max_input_len ([type], optional): maximum output seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to float('inf').
|
|
min_input_len (float, optional): minimum input seq length, in seconds for raw wav, in frame numbers for feature data. Defaults to 0.0.
|
|
max_output_len (float, optional): maximum input seq length, in modeling units. Defaults to 500.0.
|
|
min_output_len (float, optional): minimum input seq length, in modeling units. Defaults to 0.0.
|
|
max_output_input_ratio (float, optional): maximum output seq length/output seq length ratio. Defaults to 10.0.
|
|
min_output_input_ratio (float, optional): minimum output seq length/output seq length ratio. Defaults to 0.05.
|
|
|
|
"""
|
|
super().__init__()
|
|
|
|
# read manifest
|
|
self._manifest = read_manifest(
|
|
manifest_path=manifest_path,
|
|
max_input_len=max_input_len,
|
|
min_input_len=min_input_len,
|
|
max_output_len=max_output_len,
|
|
min_output_len=min_output_len,
|
|
max_output_input_ratio=max_output_input_ratio,
|
|
min_output_input_ratio=min_output_input_ratio)
|
|
self._manifest.sort(key=lambda x: x["feat_shape"][0])
|
|
|
|
def __len__(self):
|
|
return len(self._manifest)
|
|
|
|
def __getitem__(self, idx):
|
|
instance = self._manifest[idx]
|
|
return instance["utt"], instance["feat"], instance["text"]
|
|
|
|
|
|
class TripletManifestDataset(ManifestDataset):
|
|
"""
|
|
For Joint Training of Speech Translation and ASR.
|
|
text: translation,
|
|
text1: transcript.
|
|
"""
|
|
|
|
def __getitem__(self, idx):
|
|
instance = self._manifest[idx]
|
|
return instance["utt"], instance["feat"], instance["text"], instance[
|
|
"text1"]
|