You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
8.1 KiB
247 lines
8.1 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# generate mels using durations.txt
|
|
# for mb melgan finetune
|
|
# 长度和原本的 mel 不一致怎么办?
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import yaml
|
|
from tqdm import tqdm
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
|
|
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
|
|
from paddlespeech.t2s.frontend.zh_frontend import Frontend
|
|
from paddlespeech.t2s.models.speedyspeech import SpeedySpeech
|
|
from paddlespeech.t2s.models.speedyspeech import SpeedySpeechInference
|
|
from paddlespeech.t2s.modules.normalizer import ZScore
|
|
|
|
|
|
def evaluate(args, speedyspeech_config):
|
|
rootdir = Path(args.rootdir).expanduser()
|
|
assert rootdir.is_dir()
|
|
|
|
# construct dataset for evaluation
|
|
with open(args.phones_dict, "r") as f:
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
vocab_size = len(phn_id)
|
|
print("vocab_size:", vocab_size)
|
|
|
|
phone_dict = {}
|
|
for phn, id in phn_id:
|
|
phone_dict[phn] = int(id)
|
|
|
|
with open(args.tones_dict, "r") as f:
|
|
tone_id = [line.strip().split() for line in f.readlines()]
|
|
tone_size = len(tone_id)
|
|
print("tone_size:", tone_size)
|
|
|
|
frontend = Frontend(
|
|
phone_vocab_path=args.phones_dict, tone_vocab_path=args.tones_dict)
|
|
|
|
if args.speaker_dict:
|
|
with open(args.speaker_dict, 'rt') as f:
|
|
spk_id_list = [line.strip().split() for line in f.readlines()]
|
|
spk_num = len(spk_id_list)
|
|
else:
|
|
spk_num = None
|
|
|
|
model = SpeedySpeech(
|
|
vocab_size=vocab_size,
|
|
tone_size=tone_size,
|
|
**speedyspeech_config["model"],
|
|
spk_num=spk_num)
|
|
|
|
model.set_state_dict(
|
|
paddle.load(args.speedyspeech_checkpoint)["main_params"])
|
|
model.eval()
|
|
|
|
stat = np.load(args.speedyspeech_stat)
|
|
mu, std = stat
|
|
mu = paddle.to_tensor(mu)
|
|
std = paddle.to_tensor(std)
|
|
speedyspeech_normalizer = ZScore(mu, std)
|
|
|
|
speedyspeech_inference = SpeedySpeechInference(speedyspeech_normalizer,
|
|
model)
|
|
speedyspeech_inference.eval()
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
sentences, speaker_set = get_phn_dur(args.dur_file)
|
|
merge_silence(sentences)
|
|
|
|
if args.dataset == "baker":
|
|
wav_files = sorted(list((rootdir / "Wave").rglob("*.wav")))
|
|
# split data into 3 sections
|
|
num_train = 9800
|
|
num_dev = 100
|
|
train_wav_files = wav_files[:num_train]
|
|
dev_wav_files = wav_files[num_train:num_train + num_dev]
|
|
test_wav_files = wav_files[num_train + num_dev:]
|
|
elif args.dataset == "aishell3":
|
|
sub_num_dev = 5
|
|
wav_dir = rootdir / "train" / "wav"
|
|
train_wav_files = []
|
|
dev_wav_files = []
|
|
test_wav_files = []
|
|
for speaker in os.listdir(wav_dir):
|
|
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav")))
|
|
if len(wav_files) > 100:
|
|
train_wav_files += wav_files[:-sub_num_dev * 2]
|
|
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
|
|
test_wav_files += wav_files[-sub_num_dev:]
|
|
else:
|
|
train_wav_files += wav_files
|
|
|
|
train_wav_files = [
|
|
os.path.basename(str(str_path)) for str_path in train_wav_files
|
|
]
|
|
dev_wav_files = [
|
|
os.path.basename(str(str_path)) for str_path in dev_wav_files
|
|
]
|
|
test_wav_files = [
|
|
os.path.basename(str(str_path)) for str_path in test_wav_files
|
|
]
|
|
|
|
for i, utt_id in enumerate(tqdm(sentences)):
|
|
phones = sentences[utt_id][0]
|
|
durations = sentences[utt_id][1]
|
|
speaker = sentences[utt_id][2]
|
|
# 裁剪掉开头和结尾的 sil
|
|
if args.cut_sil:
|
|
if phones[0] == "sil" and len(durations) > 1:
|
|
durations = durations[1:]
|
|
phones = phones[1:]
|
|
if phones[-1] == 'sil' and len(durations) > 1:
|
|
durations = durations[:-1]
|
|
phones = phones[:-1]
|
|
|
|
phones, tones = frontend._get_phone_tone(phones, get_tone_ids=True)
|
|
if tones:
|
|
tone_ids = frontend._t2id(tones)
|
|
tone_ids = paddle.to_tensor(tone_ids)
|
|
if phones:
|
|
phone_ids = frontend._p2id(phones)
|
|
phone_ids = paddle.to_tensor(phone_ids)
|
|
|
|
if args.speaker_dict:
|
|
speaker_id = int(
|
|
[item[1] for item in spk_id_list if speaker == item[0]][0])
|
|
speaker_id = paddle.to_tensor(speaker_id)
|
|
else:
|
|
speaker_id = None
|
|
|
|
durations = paddle.to_tensor(np.array(durations))
|
|
durations = paddle.unsqueeze(durations, axis=0)
|
|
|
|
# 生成的和真实的可能有 1, 2 帧的差距,但是 batch_fn 会修复
|
|
# split data into 3 sections
|
|
|
|
wav_path = utt_id + ".wav"
|
|
|
|
if wav_path in train_wav_files:
|
|
sub_output_dir = output_dir / ("train/raw")
|
|
elif wav_path in dev_wav_files:
|
|
sub_output_dir = output_dir / ("dev/raw")
|
|
elif wav_path in test_wav_files:
|
|
sub_output_dir = output_dir / ("test/raw")
|
|
|
|
sub_output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
with paddle.no_grad():
|
|
mel = speedyspeech_inference(
|
|
phone_ids, tone_ids, durations=durations, spk_id=speaker_id)
|
|
np.save(sub_output_dir / (utt_id + "_feats.npy"), mel)
|
|
|
|
|
|
def main():
|
|
# parse args and config and redirect to train_sp
|
|
parser = argparse.ArgumentParser(
|
|
description="Synthesize with speedyspeech & parallel wavegan.")
|
|
parser.add_argument(
|
|
"--dataset",
|
|
default="baker",
|
|
type=str,
|
|
help="name of dataset, should in {baker, ljspeech, vctk} now")
|
|
parser.add_argument(
|
|
"--rootdir", default=None, type=str, help="directory to dataset.")
|
|
parser.add_argument(
|
|
"--speedyspeech-config", type=str, help="speedyspeech config file.")
|
|
parser.add_argument(
|
|
"--speedyspeech-checkpoint",
|
|
type=str,
|
|
help="speedyspeech checkpoint to load.")
|
|
parser.add_argument(
|
|
"--speedyspeech-stat",
|
|
type=str,
|
|
help="mean and standard deviation used to normalize spectrogram when training speedyspeech."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--phones-dict",
|
|
type=str,
|
|
default="phone_id_map.txt",
|
|
help="phone vocabulary file.")
|
|
parser.add_argument(
|
|
"--tones-dict",
|
|
type=str,
|
|
default="tone_id_map.txt",
|
|
help="tone vocabulary file.")
|
|
parser.add_argument(
|
|
"--speaker-dict", type=str, default=None, help="speaker id map file.")
|
|
|
|
parser.add_argument(
|
|
"--dur-file", default=None, type=str, help="path to durations.txt.")
|
|
parser.add_argument("--output-dir", type=str, help="output dir.")
|
|
parser.add_argument(
|
|
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
|
|
|
def str2bool(str):
|
|
return True if str.lower() == 'true' else False
|
|
|
|
parser.add_argument(
|
|
"--cut-sil",
|
|
type=str2bool,
|
|
default=True,
|
|
help="whether cut sil in the edge of audio")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.ngpu == 0:
|
|
paddle.set_device("cpu")
|
|
elif args.ngpu > 0:
|
|
paddle.set_device("gpu")
|
|
else:
|
|
print("ngpu should >= 0 !")
|
|
|
|
with open(args.speedyspeech_config) as f:
|
|
speedyspeech_config = CfgNode(yaml.safe_load(f))
|
|
|
|
print("========Args========")
|
|
print(yaml.safe_dump(vars(args)))
|
|
print("========Config========")
|
|
print(speedyspeech_config)
|
|
|
|
evaluate(args, speedyspeech_config)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|