You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
9.8 KiB
237 lines
9.8 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from wenet(https://github.com/wenet-e2e/wenet)
|
|
"""Multi-Head Attention layer definition."""
|
|
import math
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.nn import initializer as I
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
__all__ = ["MultiHeadedAttention", "RelPositionMultiHeadedAttention"]
|
|
|
|
# Relative Positional Encodings
|
|
# https://www.jianshu.com/p/c0608efcc26f
|
|
# https://zhuanlan.zhihu.com/p/344604604
|
|
|
|
|
|
class MultiHeadedAttention(nn.Layer):
|
|
"""Multi-Head Attention layer."""
|
|
|
|
def __init__(self, n_head: int, n_feat: int, dropout_rate: float):
|
|
"""Construct an MultiHeadedAttention object.
|
|
Args:
|
|
n_head (int): The number of heads.
|
|
n_feat (int): The number of features.
|
|
dropout_rate (float): Dropout rate.
|
|
"""
|
|
super().__init__()
|
|
assert n_feat % n_head == 0
|
|
# We assume d_v always equals d_k
|
|
self.d_k = n_feat // n_head
|
|
self.h = n_head
|
|
self.linear_q = nn.Linear(n_feat, n_feat)
|
|
self.linear_k = nn.Linear(n_feat, n_feat)
|
|
self.linear_v = nn.Linear(n_feat, n_feat)
|
|
self.linear_out = nn.Linear(n_feat, n_feat)
|
|
self.dropout = nn.Dropout(p=dropout_rate)
|
|
|
|
def forward_qkv(self,
|
|
query: paddle.Tensor,
|
|
key: paddle.Tensor,
|
|
value: paddle.Tensor
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
"""Transform query, key and value.
|
|
Args:
|
|
query (paddle.Tensor): Query tensor (#batch, time1, size).
|
|
key (paddle.Tensor): Key tensor (#batch, time2, size).
|
|
value (paddle.Tensor): Value tensor (#batch, time2, size).
|
|
Returns:
|
|
paddle.Tensor: Transformed query tensor, size
|
|
(#batch, n_head, time1, d_k).
|
|
paddle.Tensor: Transformed key tensor, size
|
|
(#batch, n_head, time2, d_k).
|
|
paddle.Tensor: Transformed value tensor, size
|
|
(#batch, n_head, time2, d_k).
|
|
"""
|
|
n_batch = query.shape[0]
|
|
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
|
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
|
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
|
q = q.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k)
|
|
k = k.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k)
|
|
v = v.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k)
|
|
|
|
return q, k, v
|
|
|
|
def forward_attention(self,
|
|
value: paddle.Tensor,
|
|
scores: paddle.Tensor,
|
|
mask: Optional[paddle.Tensor]) -> paddle.Tensor:
|
|
"""Compute attention context vector.
|
|
Args:
|
|
value (paddle.Tensor): Transformed value, size
|
|
(#batch, n_head, time2, d_k).
|
|
scores (paddle.Tensor): Attention score, size
|
|
(#batch, n_head, time1, time2).
|
|
mask (paddle.Tensor): Mask, size (#batch, 1, time2) or
|
|
(#batch, time1, time2).
|
|
Returns:
|
|
paddle.Tensor: Transformed value weighted
|
|
by the attention score, (#batch, time1, d_model).
|
|
"""
|
|
n_batch = value.shape[0]
|
|
if mask is not None:
|
|
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
|
scores = scores.masked_fill(mask, -float('inf'))
|
|
attn = paddle.softmax(
|
|
scores, axis=-1).masked_fill(mask,
|
|
0.0) # (batch, head, time1, time2)
|
|
else:
|
|
attn = paddle.softmax(
|
|
scores, axis=-1) # (batch, head, time1, time2)
|
|
|
|
p_attn = self.dropout(attn)
|
|
x = paddle.matmul(p_attn, value) # (batch, head, time1, d_k)
|
|
x = x.transpose([0, 2, 1, 3]).view(n_batch, -1, self.h *
|
|
self.d_k) # (batch, time1, d_model)
|
|
|
|
return self.linear_out(x) # (batch, time1, d_model)
|
|
|
|
def forward(self,
|
|
query: paddle.Tensor,
|
|
key: paddle.Tensor,
|
|
value: paddle.Tensor,
|
|
mask: Optional[paddle.Tensor]) -> paddle.Tensor:
|
|
"""Compute scaled dot product attention.
|
|
Args:
|
|
query (torch.Tensor): Query tensor (#batch, time1, size).
|
|
key (torch.Tensor): Key tensor (#batch, time2, size).
|
|
value (torch.Tensor): Value tensor (#batch, time2, size).
|
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
|
(#batch, time1, time2).
|
|
Returns:
|
|
torch.Tensor: Output tensor (#batch, time1, d_model).
|
|
"""
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
scores = paddle.matmul(q,
|
|
k.transpose([0, 1, 3, 2])) / math.sqrt(self.d_k)
|
|
return self.forward_attention(v, scores, mask)
|
|
|
|
|
|
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
|
"""Multi-Head Attention layer with relative position encoding."""
|
|
|
|
def __init__(self, n_head, n_feat, dropout_rate):
|
|
"""Construct an RelPositionMultiHeadedAttention object.
|
|
Paper: https://arxiv.org/abs/1901.02860
|
|
Args:
|
|
n_head (int): The number of heads.
|
|
n_feat (int): The number of features.
|
|
dropout_rate (float): Dropout rate.
|
|
"""
|
|
super().__init__(n_head, n_feat, dropout_rate)
|
|
# linear transformation for positional encoding
|
|
self.linear_pos = nn.Linear(n_feat, n_feat, bias_attr=False)
|
|
# these two learnable bias are used in matrix c and matrix d
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
#self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
|
#self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
|
#torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
|
#torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
|
pos_bias_u = self.create_parameter(
|
|
[self.h, self.d_k], default_initializer=I.XavierUniform())
|
|
self.add_parameter('pos_bias_u', pos_bias_u)
|
|
pos_bias_v = self.create_parameter(
|
|
(self.h, self.d_k), default_initializer=I.XavierUniform())
|
|
self.add_parameter('pos_bias_v', pos_bias_v)
|
|
|
|
def rel_shift(self, x, zero_triu: bool=False):
|
|
"""Compute relative positinal encoding.
|
|
Args:
|
|
x (paddle.Tensor): Input tensor (batch, head, time1, time1).
|
|
zero_triu (bool): If true, return the lower triangular part of
|
|
the matrix.
|
|
Returns:
|
|
paddle.Tensor: Output tensor. (batch, head, time1, time1)
|
|
"""
|
|
zero_pad = paddle.zeros(
|
|
(x.shape[0], x.shape[1], x.shape[2], 1), dtype=x.dtype)
|
|
x_padded = paddle.cat([zero_pad, x], dim=-1)
|
|
|
|
x_padded = x_padded.view(x.shape[0], x.shape[1], x.shape[3] + 1,
|
|
x.shape[2])
|
|
x = x_padded[:, :, 1:].view_as(x) # [B, H, T1, T1]
|
|
|
|
if zero_triu:
|
|
ones = paddle.ones((x.shape[2], x.shape[3]))
|
|
x = x * paddle.tril(ones, x.shape[3] - x.shape[2])[None, None, :, :]
|
|
|
|
return x
|
|
|
|
def forward(self,
|
|
query: paddle.Tensor,
|
|
key: paddle.Tensor,
|
|
value: paddle.Tensor,
|
|
pos_emb: paddle.Tensor,
|
|
mask: Optional[paddle.Tensor]):
|
|
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
|
Args:
|
|
query (paddle.Tensor): Query tensor (#batch, time1, size).
|
|
key (paddle.Tensor): Key tensor (#batch, time2, size).
|
|
value (paddle.Tensor): Value tensor (#batch, time2, size).
|
|
pos_emb (paddle.Tensor): Positional embedding tensor
|
|
(#batch, time1, size).
|
|
mask (paddle.Tensor): Mask tensor (#batch, 1, time2) or
|
|
(#batch, time1, time2).
|
|
Returns:
|
|
paddle.Tensor: Output tensor (#batch, time1, d_model).
|
|
"""
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
q = q.transpose([0, 2, 1, 3]) # (batch, time1, head, d_k)
|
|
|
|
n_batch_pos = pos_emb.shape[0]
|
|
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
|
p = p.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k)
|
|
|
|
# (batch, head, time1, d_k)
|
|
q_with_bias_u = (q + self.pos_bias_u).transpose([0, 2, 1, 3])
|
|
# (batch, head, time1, d_k)
|
|
q_with_bias_v = (q + self.pos_bias_v).transpose([0, 2, 1, 3])
|
|
|
|
# compute attention score
|
|
# first compute matrix a and matrix c
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
# (batch, head, time1, time2)
|
|
matrix_ac = paddle.matmul(q_with_bias_u, k.transpose([0, 1, 3, 2]))
|
|
|
|
# compute matrix b and matrix d
|
|
# (batch, head, time1, time2)
|
|
matrix_bd = paddle.matmul(q_with_bias_v, p.transpose([0, 1, 3, 2]))
|
|
# Remove rel_shift since it is useless in speech recognition,
|
|
# and it requires special attention for streaming.
|
|
# matrix_bd = self.rel_shift(matrix_bd)
|
|
|
|
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
|
self.d_k) # (batch, head, time1, time2)
|
|
|
|
return self.forward_attention(v, scores, mask)
|