You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/csmsc/tts3/run.sh

66 lines
2.3 KiB

#!/bin/bash
set -e
source path.sh
gpus=0,1
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# synthesize_e2e, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# inference with static model
CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path} || exit -1
fi
# paddle2onnx, please make sure the static models are in ${train_output_path}/inference first
# we have only tested the following models so far
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# install paddle2onnx
version=$(echo `pip list |grep "paddle2onnx"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '0.9.4' ]]; then
pip install paddle2onnx==0.9.4
fi
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx fastspeech2_csmsc
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx hifigan_csmsc
./local/paddle2onnx.sh ${train_output_path} inference inference_onnx mb_melgan_csmsc
fi
# inference with onnxruntime, use fastspeech2 + hifigan by default
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
# install onnxruntime
version=$(echo `pip list |grep "onnxruntime"` |awk -F" " '{print $2}')
if [[ -z "$version" || ${version} != '1.10.0' ]]; then
pip install onnxruntime==1.10.0
fi
./local/ort_predict.sh ${train_output_path}
fi