You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
7.0 KiB
212 lines
7.0 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional
|
|
|
|
from paddle.io import Dataset
|
|
from yacs.config import CfgNode
|
|
|
|
from deepspeech.frontend.utility import read_manifest
|
|
from deepspeech.io.utility import pad_list
|
|
from deepspeech.utils.log import Log
|
|
|
|
__all__ = [
|
|
"ManifestDataset", "TripletManifestDataset", "TransformDataset",
|
|
"CustomConverter"
|
|
]
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
class ManifestDataset(Dataset):
|
|
@classmethod
|
|
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
|
|
default = CfgNode(
|
|
dict(
|
|
manifest="",
|
|
max_input_len=27.0,
|
|
min_input_len=0.0,
|
|
max_output_len=float('inf'),
|
|
min_output_len=0.0,
|
|
max_output_input_ratio=float('inf'),
|
|
min_output_input_ratio=0.0, ))
|
|
|
|
if config is not None:
|
|
config.merge_from_other_cfg(default)
|
|
return default
|
|
|
|
@classmethod
|
|
def from_config(cls, config):
|
|
"""Build a ManifestDataset object from a config.
|
|
|
|
Args:
|
|
config (yacs.config.CfgNode): configs object.
|
|
|
|
Returns:
|
|
ManifestDataset: dataet object.
|
|
"""
|
|
assert 'manifest' in config.data
|
|
assert config.data.manifest
|
|
|
|
dataset = cls(
|
|
manifest_path=config.data.manifest,
|
|
max_input_len=config.data.max_input_len,
|
|
min_input_len=config.data.min_input_len,
|
|
max_output_len=config.data.max_output_len,
|
|
min_output_len=config.data.min_output_len,
|
|
max_output_input_ratio=config.data.max_output_input_ratio,
|
|
min_output_input_ratio=config.data.min_output_input_ratio, )
|
|
return dataset
|
|
|
|
def __init__(self,
|
|
manifest_path,
|
|
max_input_len=float('inf'),
|
|
min_input_len=0.0,
|
|
max_output_len=float('inf'),
|
|
min_output_len=0.0,
|
|
max_output_input_ratio=float('inf'),
|
|
min_output_input_ratio=0.0):
|
|
"""Manifest Dataset
|
|
|
|
Args:
|
|
manifest_path (str): manifest josn file path
|
|
max_input_len ([type], optional): maximum output seq length,
|
|
in seconds for raw wav, in frame numbers for feature data. Defaults to float('inf').
|
|
min_input_len (float, optional): minimum input seq length,
|
|
in seconds for raw wav, in frame numbers for feature data. Defaults to 0.0.
|
|
max_output_len (float, optional): maximum input seq length,
|
|
in modeling units. Defaults to 500.0.
|
|
min_output_len (float, optional): minimum input seq length,
|
|
in modeling units. Defaults to 0.0.
|
|
max_output_input_ratio (float, optional): maximum output seq length/output seq length ratio.
|
|
Defaults to 10.0.
|
|
min_output_input_ratio (float, optional): minimum output seq length/output seq length ratio.
|
|
Defaults to 0.05.
|
|
|
|
"""
|
|
super().__init__()
|
|
|
|
# read manifest
|
|
self._manifest = read_manifest(
|
|
manifest_path=manifest_path,
|
|
max_input_len=max_input_len,
|
|
min_input_len=min_input_len,
|
|
max_output_len=max_output_len,
|
|
min_output_len=min_output_len,
|
|
max_output_input_ratio=max_output_input_ratio,
|
|
min_output_input_ratio=min_output_input_ratio)
|
|
self._manifest.sort(key=lambda x: x["feat_shape"][0])
|
|
|
|
def __len__(self):
|
|
return len(self._manifest)
|
|
|
|
def __getitem__(self, idx):
|
|
instance = self._manifest[idx]
|
|
return instance["utt"], instance["feat"], instance["text"]
|
|
|
|
|
|
class TripletManifestDataset(ManifestDataset):
|
|
"""
|
|
For Joint Training of Speech Translation and ASR.
|
|
text: translation,
|
|
text1: transcript.
|
|
"""
|
|
|
|
def __getitem__(self, idx):
|
|
instance = self._manifest[idx]
|
|
return instance["utt"], instance["feat"], instance["text"], instance[
|
|
"text1"]
|
|
|
|
|
|
class CustomConverter():
|
|
"""Custom batch converter.
|
|
|
|
Args:
|
|
subsampling_factor (int): The subsampling factor.
|
|
dtype (np.dtype): Data type to convert.
|
|
|
|
"""
|
|
|
|
def __init__(self, subsampling_factor=1, dtype=np.float32):
|
|
"""Construct a CustomConverter object."""
|
|
self.subsampling_factor = subsampling_factor
|
|
self.ignore_id = -1
|
|
self.dtype = dtype
|
|
|
|
def __call__(self, batch):
|
|
"""Transform a batch and send it to a device.
|
|
|
|
Args:
|
|
batch (list): The batch to transform.
|
|
|
|
Returns:
|
|
tuple(paddle.Tensor, paddle.Tensor, paddle.Tensor)
|
|
|
|
"""
|
|
# batch should be located in list
|
|
assert len(batch) == 1
|
|
(xs, ys), utts = batch[0]
|
|
|
|
# perform subsampling
|
|
if self.subsampling_factor > 1:
|
|
xs = [x[::self.subsampling_factor, :] for x in xs]
|
|
|
|
# get batch of lengths of input sequences
|
|
ilens = np.array([x.shape[0] for x in xs])
|
|
|
|
# perform padding and convert to tensor
|
|
# currently only support real number
|
|
if xs[0].dtype.kind == "c":
|
|
xs_pad_real = pad_list([x.real for x in xs], 0).astype(self.dtype)
|
|
xs_pad_imag = pad_list([x.imag for x in xs], 0).astype(self.dtype)
|
|
# Note(kamo):
|
|
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
|
|
# Don't create ComplexTensor and give it E2E here
|
|
# because torch.nn.DataParellel can't handle it.
|
|
xs_pad = {"real": xs_pad_real, "imag": xs_pad_imag}
|
|
else:
|
|
xs_pad = pad_list(xs, 0).astype(self.dtype)
|
|
|
|
# NOTE: this is for multi-output (e.g., speech translation)
|
|
ys_pad = pad_list(
|
|
[np.array(y[0][:]) if isinstance(y, tuple) else y for y in ys],
|
|
self.ignore_id)
|
|
|
|
olens = np.array(
|
|
[y[0].shape[0] if isinstance(y, tuple) else y.shape[0] for y in ys])
|
|
return utts, xs_pad, ilens, ys_pad, olens
|
|
|
|
|
|
class TransformDataset(Dataset):
|
|
"""Transform Dataset.
|
|
|
|
Args:
|
|
data: list object from make_batchset
|
|
transfrom: transform function
|
|
|
|
"""
|
|
|
|
def __init__(self, data, transform):
|
|
"""Init function."""
|
|
super().__init__()
|
|
self.data = data
|
|
self.transform = transform
|
|
|
|
def __len__(self):
|
|
"""Len function."""
|
|
return len(self.data)
|
|
|
|
def __getitem__(self, idx):
|
|
"""[] operator."""
|
|
return self.transform(self.data[idx])
|