You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/vector/datasets/ark_dataset.py

143 lines
4.6 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import random
import numpy as np
import kaldi_python_io as k_io
from paddle.io import Dataset
from paddlespeech.vector.utils.data_utils import batch_pad_right
import paddlespeech.vector.utils as utils
from paddlespeech.vector.utils.utils import read_map_file
from paddlespeech.vector import _logger as log
def ark_collate_fn(batch):
"""
Custom collate function] for kaldi feats dataset
Args:
min_chunk_size: min chunk size of a utterance
max_chunk_size: max chunk size of a utterance
Returns:
ark_collate_fn: collate funtion for dataloader
"""
data = []
target = []
for items in batch:
for x, y in zip(items[0], items[1]):
data.append(np.array(x))
target.append(y)
data, lengths = batch_pad_right(data)
return np.array(data, dtype=np.float32), \
np.array(lengths, dtype=np.float32), \
np.array(target, dtype=np.long).reshape((len(target), 1))
class KaldiArkDataset(Dataset):
"""
Dataset used to load kaldi ark/scp files.
"""
def __init__(self, scp_file, label2utt, min_item_size=1,
max_item_size=1, repeat=50, min_chunk_size=200,
max_chunk_size=400, select_by_speaker=True):
self.scp_file = scp_file
self.scp_reader = None
self.repeat = repeat
self.min_item_size = min_item_size
self.max_item_size = max_item_size
self.min_chunk_size = min_chunk_size
self.max_chunk_size = max_chunk_size
self._collate_fn = ark_collate_fn
self._is_select_by_speaker = select_by_speaker
if utils.is_exist(self.scp_file):
self.scp_reader = k_io.ScriptReader(self.scp_file)
label2utts, utt2label = read_map_file(label2utt, key_func=int)
self.utt_info = list(label2utts.items()) if self._is_select_by_speaker else list(utt2label.items())
@property
def collate_fn(self):
"""
Return a collate funtion.
"""
return self._collate_fn
def _random_chunk(self, length):
chunk_size = random.randint(self.min_chunk_size, self.max_chunk_size)
if chunk_size >= length:
return 0, length
start = random.randint(0, length - chunk_size)
end = start + chunk_size
return start, end
def _select_by_speaker(self, index):
if self.scp_reader is None or not self.utt_info:
return []
index = index % (len(self.utt_info))
inputs = []
labels = []
item_size = random.randint(self.min_item_size, self.max_item_size)
for loop_idx in range(item_size):
try:
utt_index = random.randint(0, len(self.utt_info[index][1])) \
% len(self.utt_info[index][1])
key = self.utt_info[index][1][utt_index]
except:
print(index, utt_index, len(self.utt_info[index][1]))
sys.exit(-1)
x = self.scp_reader[key]
x = np.transpose(x)
bg, end = self._random_chunk(x.shape[-1])
inputs.append(x[:, bg: end])
labels.append(self.utt_info[index][0])
return inputs, labels
def _select_by_utt(self, index):
if self.scp_reader is None or len(self.utt_info) == 0:
return {}
index = index % (len(self.utt_info))
key = self.utt_info[index][0]
x = self.scp_reader[key]
x = np.transpose(x)
bg, end = self._random_chunk(x.shape[-1])
y = self.utt_info[index][1]
return [x[:, bg: end]], [y]
def __getitem__(self, index):
if self._is_select_by_speaker:
return self._select_by_speaker(index)
else:
return self._select_by_utt(index)
def __len__(self):
return len(self.utt_info) * self.repeat
def __iter__(self):
self._start = 0
return self
def __next__(self):
if self._start < len(self):
ret = self[self._start]
self._start += 1
return ret
else:
raise StopIteration