You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/utils/util.py

149 lines
4.7 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the
import base64
import math
def wav2base64(wav_file: str):
"""
read wave file and covert to base64 string
"""
with open(wav_file, 'rb') as f:
base64_bytes = base64.b64encode(f.read())
base64_string = base64_bytes.decode('utf-8')
return base64_string
def base64towav(base64_string: str):
pass
def self_check():
""" self check resource
"""
return True
def denorm(data, mean, std):
"""stream am model need to denorm
"""
return data * std + mean
def get_chunks(data, block_size, pad_size, step):
"""Divide data into multiple chunks
Args:
data (tensor): data
block_size (int): [description]
pad_size (int): [description]
step (str): set "am" or "voc", generate chunk for step am or vocoder(voc)
Returns:
list: chunks list
"""
if block_size == -1:
return [data]
if step == "am":
data_len = data.shape[1]
elif step == "voc":
data_len = data.shape[0]
else:
print("Please set correct type to get chunks, am or voc")
chunks = []
n = math.ceil(data_len / block_size)
for i in range(n):
start = max(0, i * block_size - pad_size)
end = min((i + 1) * block_size + pad_size, data_len)
if step == "am":
chunks.append(data[:, start:end, :])
elif step == "voc":
chunks.append(data[start:end, :])
else:
print("Please set correct type to get chunks, am or voc")
return chunks
def compute_delay(receive_time_list, chunk_duration_list):
"""compute delay
Args:
receive_time_list (list): Time to receive each packet
chunk_duration_list (list): The audio duration corresponding to each packet
Returns:
[list]: Delay time list
"""
assert (len(receive_time_list) == len(chunk_duration_list))
delay_time_list = []
play_time = receive_time_list[0] + chunk_duration_list[0]
for i in range(1, len(receive_time_list)):
receive_time = receive_time_list[i]
delay_time = receive_time - play_time
# 有延迟
if delay_time > 0:
play_time = play_time + delay_time + chunk_duration_list[i]
delay_time_list.append(delay_time)
# 没有延迟
else:
play_time = play_time + chunk_duration_list[i]
return delay_time_list
def count_engine(logfile: str="./nohup.out"):
"""For inference on the statistical engine side
Args:
logfile (str, optional): server log. Defaults to "./nohup.out".
"""
first_response_list = []
final_response_list = []
duration_list = []
with open(logfile, "r") as f:
for line in f.readlines():
if "- first response time:" in line:
first_response = float(line.splie(" ")[-2])
first_response_list.append(first_response)
elif "- final response time:" in line:
final_response = float(line.splie(" ")[-2])
final_response_list.append(final_response)
elif "- The durations of audio is:" in line:
duration = float(line.splie(" ")[-2])
duration_list.append(duration)
assert (len(first_response_list) == len(final_response_list) and
len(final_response_list) == len(duration_list))
avg_first_response = sum(first_response_list) / len(first_response_list)
avg_final_response = sum(final_response_list) / len(final_response_list)
avg_duration = sum(duration_list) / len(duration_list)
RTF = sum(final_response_list) / sum(duration_list)
print(
"************************* engine result ***************************************"
)
print(
f"test num: {len(duration_list)}, avg first response: {avg_first_response} s, avg final response: {avg_final_response} s, avg duration: {avg_duration}, RTF: {RTF}"
)
print(
f"min duration: {min(duration_list)} s, max duration: {max(duration_list)} s"
)
print(
f"max first response: {max(first_response_list)} s, min first response: {min(first_response_list)} s"
)
print(
f"max final response: {max(final_response_list)} s, min final response: {min(final_response_list)} s"
)