You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
913 lines
35 KiB
913 lines
35 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
from typing import ByteString
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from numpy import float32
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.cli.asr.infer import ASRExecutor
|
|
from paddlespeech.cli.log import logger
|
|
from paddlespeech.cli.utils import MODEL_HOME
|
|
from paddlespeech.resource import CommonTaskResource
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
from paddlespeech.s2t.modules.ctc import CTCDecoder
|
|
from paddlespeech.s2t.transform.transformation import Transformation
|
|
from paddlespeech.s2t.utils.tensor_utils import add_sos_eos
|
|
from paddlespeech.s2t.utils.tensor_utils import pad_sequence
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
from paddlespeech.server.engine.asr.online.ctc_endpoint import OnlineCTCEndpoingOpt
|
|
from paddlespeech.server.engine.asr.online.ctc_endpoint import OnlineCTCEndpoint
|
|
from paddlespeech.server.engine.asr.online.ctc_search import CTCPrefixBeamSearch
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
from paddlespeech.server.utils.paddle_predictor import init_predictor
|
|
|
|
__all__ = ['PaddleASRConnectionHanddler', 'ASRServerExecutor', 'ASREngine']
|
|
|
|
|
|
# ASR server connection process class
|
|
class PaddleASRConnectionHanddler:
|
|
def __init__(self, asr_engine):
|
|
"""Init a Paddle ASR Connection Handler instance
|
|
|
|
Args:
|
|
asr_engine (ASREngine): the global asr engine
|
|
"""
|
|
super().__init__()
|
|
logger.info(
|
|
"create an paddle asr connection handler to process the websocket connection"
|
|
)
|
|
self.config = asr_engine.config # server config
|
|
self.model_config = asr_engine.executor.config
|
|
self.asr_engine = asr_engine
|
|
|
|
# model_type, sample_rate and text_feature is shared for deepspeech2 and conformer
|
|
self.model_type = self.asr_engine.executor.model_type
|
|
self.sample_rate = self.asr_engine.executor.sample_rate
|
|
# tokens to text
|
|
self.text_feature = self.asr_engine.executor.text_feature
|
|
|
|
# extract feat, new only fbank in conformer model
|
|
self.preprocess_conf = self.model_config.preprocess_config
|
|
self.preprocess_args = {"train": False}
|
|
self.preprocessing = Transformation(self.preprocess_conf)
|
|
|
|
# frame window and frame shift, in samples unit
|
|
self.win_length = self.preprocess_conf.process[0]['win_length']
|
|
self.n_shift = self.preprocess_conf.process[0]['n_shift']
|
|
|
|
assert self.preprocess_conf.process[0]['fs'] == self.sample_rate, (
|
|
self.sample_rate, self.preprocess_conf.process[0]['fs'])
|
|
self.frame_shift_in_ms = int(
|
|
self.n_shift / self.preprocess_conf.process[0]['fs'] * 1000)
|
|
|
|
self.continuous_decoding = self.config.get("continuous_decoding", False)
|
|
self.init_decoder()
|
|
self.reset()
|
|
|
|
def init_decoder(self):
|
|
if "deepspeech2" in self.model_type:
|
|
assert self.continuous_decoding is False, "ds2 model not support endpoint"
|
|
self.am_predictor = self.asr_engine.executor.am_predictor
|
|
|
|
self.decoder = CTCDecoder(
|
|
odim=self.model_config.output_dim, # <blank> is in vocab
|
|
enc_n_units=self.model_config.rnn_layer_size * 2,
|
|
blank_id=self.model_config.blank_id,
|
|
dropout_rate=0.0,
|
|
reduction=True, # sum
|
|
batch_average=True, # sum / batch_size
|
|
grad_norm_type=self.model_config.get('ctc_grad_norm_type',
|
|
None))
|
|
|
|
cfg = self.model_config.decode
|
|
decode_batch_size = 1 # for online
|
|
self.decoder.init_decoder(
|
|
decode_batch_size, self.text_feature.vocab_list,
|
|
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
|
|
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
|
|
cfg.num_proc_bsearch)
|
|
|
|
elif "conformer" in self.model_type or "transformer" in self.model_type:
|
|
# acoustic model
|
|
self.model = self.asr_engine.executor.model
|
|
self.continuous_decoding = self.config.continuous_decoding
|
|
logger.info(f"continue decoding: {self.continuous_decoding}")
|
|
|
|
# ctc decoding config
|
|
self.ctc_decode_config = self.asr_engine.executor.config.decode
|
|
self.searcher = CTCPrefixBeamSearch(self.ctc_decode_config)
|
|
|
|
# ctc endpoint
|
|
self.endpoint_opt = OnlineCTCEndpoingOpt(
|
|
frame_shift_in_ms=self.frame_shift_in_ms, blank=0)
|
|
self.endpointer = OnlineCTCEndpoint(self.endpoint_opt)
|
|
else:
|
|
raise ValueError(f"Not supported: {self.model_type}")
|
|
|
|
def model_reset(self):
|
|
# cache for audio and feat
|
|
self.remained_wav = None
|
|
self.cached_feat = None
|
|
|
|
if "deepspeech2" in self.model_type:
|
|
return
|
|
|
|
## conformer
|
|
# cache for conformer online
|
|
self.subsampling_cache = None
|
|
self.elayers_output_cache = None
|
|
self.conformer_cnn_cache = None
|
|
self.encoder_out = None
|
|
# conformer decoding state
|
|
self.offset = 0 # global offset in decoding frame unit
|
|
|
|
## just for record info
|
|
self.chunk_num = 0 # global decoding chunk num, not used
|
|
|
|
def output_reset(self):
|
|
## outputs
|
|
# partial/ending decoding results
|
|
self.result_transcripts = ['']
|
|
# token timestamp result
|
|
self.word_time_stamp = []
|
|
|
|
## just for record
|
|
self.hyps = []
|
|
|
|
# one best timestamp viterbi prob is large.
|
|
self.time_stamp = []
|
|
|
|
def reset_continuous_decoding(self):
|
|
"""
|
|
when in continous decoding, reset for next utterance.
|
|
"""
|
|
self.global_frame_offset = self.num_frames
|
|
self.model_reset()
|
|
self.searcher.reset()
|
|
self.endpointer.reset()
|
|
|
|
# reset hys will trancate history transcripts.
|
|
# self.output_reset()
|
|
|
|
def reset(self):
|
|
if "deepspeech2" in self.model_type:
|
|
# for deepspeech2
|
|
# init state
|
|
self.chunk_state_h_box = np.zeros(
|
|
(self.model_config.num_rnn_layers, 1,
|
|
self.model_config.rnn_layer_size),
|
|
dtype=float32)
|
|
self.chunk_state_c_box = np.zeros(
|
|
(self.model_config.num_rnn_layers, 1,
|
|
self.model_config.rnn_layer_size),
|
|
dtype=float32)
|
|
self.decoder.reset_decoder(batch_size=1)
|
|
|
|
if "conformer" in self.model_type or "transformer" in self.model_type:
|
|
self.searcher.reset()
|
|
self.endpointer.reset()
|
|
|
|
self.device = None
|
|
|
|
## common
|
|
# global sample and frame step
|
|
self.num_samples = 0
|
|
self.global_frame_offset = 0
|
|
# frame step of cur utterance
|
|
self.num_frames = 0
|
|
|
|
## endpoint
|
|
self.endpoint_state = False # True for detect endpoint
|
|
|
|
## conformer
|
|
self.model_reset()
|
|
|
|
## outputs
|
|
self.output_reset()
|
|
|
|
def extract_feat(self, samples: ByteString):
|
|
logger.info("Online ASR extract the feat")
|
|
samples = np.frombuffer(samples, dtype=np.int16)
|
|
assert samples.ndim == 1
|
|
|
|
self.num_samples += samples.shape[0]
|
|
logger.info(
|
|
f"This package receive {samples.shape[0]} pcm data. Global samples:{self.num_samples}"
|
|
)
|
|
|
|
# self.reamined_wav stores all the samples,
|
|
# include the original remained_wav and this package samples
|
|
if self.remained_wav is None:
|
|
self.remained_wav = samples
|
|
else:
|
|
assert self.remained_wav.ndim == 1 # (T,)
|
|
self.remained_wav = np.concatenate([self.remained_wav, samples])
|
|
logger.info(
|
|
f"The concatenation of remain and now audio samples length is: {self.remained_wav.shape}"
|
|
)
|
|
|
|
if len(self.remained_wav) < self.win_length:
|
|
# samples not enough for feature window
|
|
return 0
|
|
|
|
# fbank
|
|
x_chunk = self.preprocessing(self.remained_wav, **self.preprocess_args)
|
|
x_chunk = paddle.to_tensor(x_chunk, dtype="float32").unsqueeze(axis=0)
|
|
|
|
# feature cache
|
|
if self.cached_feat is None:
|
|
self.cached_feat = x_chunk
|
|
else:
|
|
assert (len(x_chunk.shape) == 3) # (B,T,D)
|
|
assert (len(self.cached_feat.shape) == 3) # (B,T,D)
|
|
self.cached_feat = paddle.concat(
|
|
[self.cached_feat, x_chunk], axis=1)
|
|
|
|
# set the feat device
|
|
if self.device is None:
|
|
self.device = self.cached_feat.place
|
|
|
|
# cur frame step
|
|
num_frames = x_chunk.shape[1]
|
|
|
|
# global frame step
|
|
self.num_frames += num_frames
|
|
|
|
# update remained wav
|
|
self.remained_wav = self.remained_wav[self.n_shift * num_frames:]
|
|
|
|
logger.info(
|
|
f"process the audio feature success, the cached feat shape: {self.cached_feat.shape}"
|
|
)
|
|
logger.info(
|
|
f"After extract feat, the cached remain the audio samples: {self.remained_wav.shape}"
|
|
)
|
|
logger.info(f"global samples: {self.num_samples}")
|
|
logger.info(f"global frames: {self.num_frames}")
|
|
|
|
def decode(self, is_finished=False):
|
|
"""advance decoding
|
|
|
|
Args:
|
|
is_finished (bool, optional): Is last frame or not. Defaults to False.
|
|
|
|
Returns:
|
|
None:
|
|
"""
|
|
if "deepspeech2" in self.model_type:
|
|
decoding_chunk_size = 1 # decoding chunk size = 1. int decoding frame unit
|
|
|
|
context = 7 # context=7, in audio frame unit
|
|
subsampling = 4 # subsampling=4, in audio frame unit
|
|
|
|
cached_feature_num = context - subsampling
|
|
# decoding window for model, in audio frame unit
|
|
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
|
# decoding stride for model, in audio frame unit
|
|
stride = subsampling * decoding_chunk_size
|
|
|
|
if self.cached_feat is None:
|
|
logger.info("no audio feat, please input more pcm data")
|
|
return
|
|
|
|
num_frames = self.cached_feat.shape[1]
|
|
logger.info(
|
|
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
|
|
)
|
|
|
|
# the cached feat must be larger decoding_window
|
|
if num_frames < decoding_window and not is_finished:
|
|
logger.info(
|
|
f"frame feat num is less than {decoding_window}, please input more pcm data"
|
|
)
|
|
return None, None
|
|
|
|
# if is_finished=True, we need at least context frames
|
|
if num_frames < context:
|
|
logger.info(
|
|
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
|
|
)
|
|
return None, None
|
|
|
|
logger.info("start to do model forward")
|
|
# num_frames - context + 1 ensure that current frame can get context window
|
|
if is_finished:
|
|
# if get the finished chunk, we need process the last context
|
|
left_frames = context
|
|
else:
|
|
# we only process decoding_window frames for one chunk
|
|
left_frames = decoding_window
|
|
|
|
end = None
|
|
for cur in range(0, num_frames - left_frames + 1, stride):
|
|
end = min(cur + decoding_window, num_frames)
|
|
|
|
# extract the audio
|
|
x_chunk = self.cached_feat[:, cur:end, :].numpy()
|
|
x_chunk_lens = np.array([x_chunk.shape[1]])
|
|
|
|
trans_best = self.decode_one_chunk(x_chunk, x_chunk_lens)
|
|
|
|
self.result_transcripts = [trans_best]
|
|
|
|
# update feat cache
|
|
self.cached_feat = self.cached_feat[:, end - cached_feature_num:, :]
|
|
|
|
# return trans_best[0]
|
|
elif "conformer" in self.model_type or "transformer" in self.model_type:
|
|
try:
|
|
logger.info(
|
|
f"we will use the transformer like model : {self.model_type}"
|
|
)
|
|
self.advance_decoding(is_finished)
|
|
self.update_result()
|
|
|
|
except Exception as e:
|
|
logger.exception(e)
|
|
else:
|
|
raise Exception("invalid model name")
|
|
|
|
@paddle.no_grad()
|
|
def decode_one_chunk(self, x_chunk, x_chunk_lens):
|
|
"""forward one chunk frames
|
|
|
|
Args:
|
|
x_chunk (np.ndarray): (B,T,D), audio frames.
|
|
x_chunk_lens ([type]): (B,), audio frame lens
|
|
|
|
Returns:
|
|
logprob: poster probability.
|
|
"""
|
|
logger.info("start to decoce one chunk for deepspeech2")
|
|
input_names = self.am_predictor.get_input_names()
|
|
audio_handle = self.am_predictor.get_input_handle(input_names[0])
|
|
audio_len_handle = self.am_predictor.get_input_handle(input_names[1])
|
|
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
|
|
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
|
|
|
|
audio_handle.reshape(x_chunk.shape)
|
|
audio_handle.copy_from_cpu(x_chunk)
|
|
|
|
audio_len_handle.reshape(x_chunk_lens.shape)
|
|
audio_len_handle.copy_from_cpu(x_chunk_lens)
|
|
|
|
h_box_handle.reshape(self.chunk_state_h_box.shape)
|
|
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
|
|
|
|
c_box_handle.reshape(self.chunk_state_c_box.shape)
|
|
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
|
|
|
|
output_names = self.am_predictor.get_output_names()
|
|
output_handle = self.am_predictor.get_output_handle(output_names[0])
|
|
output_lens_handle = self.am_predictor.get_output_handle(
|
|
output_names[1])
|
|
output_state_h_handle = self.am_predictor.get_output_handle(
|
|
output_names[2])
|
|
output_state_c_handle = self.am_predictor.get_output_handle(
|
|
output_names[3])
|
|
|
|
self.am_predictor.run()
|
|
|
|
output_chunk_probs = output_handle.copy_to_cpu()
|
|
output_chunk_lens = output_lens_handle.copy_to_cpu()
|
|
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
|
|
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
|
|
|
|
self.decoder.next(output_chunk_probs, output_chunk_lens)
|
|
trans_best, trans_beam = self.decoder.decode()
|
|
logger.info(f"decode one best result for deepspeech2: {trans_best[0]}")
|
|
return trans_best[0]
|
|
|
|
@paddle.no_grad()
|
|
def advance_decoding(self, is_finished=False):
|
|
if "deepspeech" in self.model_type:
|
|
return
|
|
|
|
# reset endpiont state
|
|
self.endpoint_state = False
|
|
|
|
logger.info(
|
|
"Conformer/Transformer: start to decode with advanced_decoding method"
|
|
)
|
|
cfg = self.ctc_decode_config
|
|
|
|
# cur chunk size, in decoding frame unit, e.g. 16
|
|
decoding_chunk_size = cfg.decoding_chunk_size
|
|
# using num of history chunks, e.g -1
|
|
num_decoding_left_chunks = cfg.num_decoding_left_chunks
|
|
assert decoding_chunk_size > 0
|
|
|
|
# e.g. 4
|
|
subsampling = self.model.encoder.embed.subsampling_rate
|
|
# e.g. 7
|
|
context = self.model.encoder.embed.right_context + 1
|
|
|
|
# processed chunk feature cached for next chunk, e.g. 3
|
|
cached_feature_num = context - subsampling
|
|
|
|
# decoding window, in audio frame unit
|
|
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
|
# decoding stride, in audio frame unit
|
|
stride = subsampling * decoding_chunk_size
|
|
|
|
if self.cached_feat is None:
|
|
logger.info("no audio feat, please input more pcm data")
|
|
return
|
|
|
|
# (B=1,T,D)
|
|
num_frames = self.cached_feat.shape[1]
|
|
logger.info(
|
|
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
|
|
)
|
|
|
|
# the cached feat must be larger decoding_window
|
|
if num_frames < decoding_window and not is_finished:
|
|
logger.info(
|
|
f"frame feat num is less than {decoding_window}, please input more pcm data"
|
|
)
|
|
return None, None
|
|
|
|
# if is_finished=True, we need at least context frames
|
|
if num_frames < context:
|
|
logger.info(
|
|
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
|
|
)
|
|
return None, None
|
|
|
|
logger.info("start to do model forward")
|
|
|
|
# num_frames - context + 1 ensure that current frame can get context window
|
|
if is_finished:
|
|
# if get the finished chunk, we need process the last context
|
|
left_frames = context
|
|
else:
|
|
# we only process decoding_window frames for one chunk
|
|
left_frames = decoding_window
|
|
|
|
# hist of chunks, in deocding frame unit
|
|
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
|
|
|
# record the end for removing the processed feat
|
|
outputs = []
|
|
end = None
|
|
for cur in range(0, num_frames - left_frames + 1, stride):
|
|
end = min(cur + decoding_window, num_frames)
|
|
|
|
# global chunk_num
|
|
self.chunk_num += 1
|
|
# cur chunk
|
|
chunk_xs = self.cached_feat[:, cur:end, :]
|
|
# forward chunk
|
|
(y, self.subsampling_cache, self.elayers_output_cache,
|
|
self.conformer_cnn_cache) = self.model.encoder.forward_chunk(
|
|
chunk_xs, self.offset, required_cache_size,
|
|
self.subsampling_cache, self.elayers_output_cache,
|
|
self.conformer_cnn_cache)
|
|
outputs.append(y)
|
|
|
|
# update the global offset, in decoding frame unit
|
|
self.offset += y.shape[1]
|
|
|
|
ys = paddle.cat(outputs, 1)
|
|
if self.encoder_out is None:
|
|
self.encoder_out = ys
|
|
else:
|
|
self.encoder_out = paddle.concat([self.encoder_out, ys], axis=1)
|
|
logger.info(
|
|
f"This connection handler encoder out shape: {self.encoder_out.shape}"
|
|
)
|
|
|
|
# get the ctc probs
|
|
ctc_probs = self.model.ctc.log_softmax(ys) # (1, maxlen, vocab_size)
|
|
ctc_probs = ctc_probs.squeeze(0)
|
|
|
|
## decoding
|
|
# advance decoding
|
|
self.searcher.search(ctc_probs, self.cached_feat.place)
|
|
# get one best hyps
|
|
self.hyps = self.searcher.get_one_best_hyps()
|
|
|
|
# endpoint
|
|
if not is_finished:
|
|
|
|
def contain_nonsilence():
|
|
return len(self.hyps) > 0 and len(self.hyps[0]) > 0
|
|
|
|
decoding_something = contain_nonsilence()
|
|
if self.endpointer.endpoint_detected(ctc_probs.numpy(),
|
|
decoding_something):
|
|
self.endpoint_state = True
|
|
logger.info(f"Endpoint is detected at {self.num_frames} frame.")
|
|
|
|
# advance cache of feat
|
|
assert self.cached_feat.shape[0] == 1 #(B=1,T,D)
|
|
assert end >= cached_feature_num
|
|
self.cached_feat = self.cached_feat[:, end - cached_feature_num:, :]
|
|
assert len(
|
|
self.cached_feat.shape
|
|
) == 3, f"current cache feat shape is: {self.cached_feat.shape}"
|
|
|
|
def update_result(self):
|
|
"""Conformer/Transformer hyps to result.
|
|
"""
|
|
logger.info("update the final result")
|
|
hyps = self.hyps
|
|
|
|
# output results and tokenids
|
|
self.result_transcripts = [
|
|
self.text_feature.defeaturize(hyp) for hyp in hyps
|
|
]
|
|
self.result_tokenids = [hyp for hyp in hyps]
|
|
|
|
def get_result(self):
|
|
"""return partial/ending asr result.
|
|
|
|
Returns:
|
|
str: one best result of partial/ending.
|
|
"""
|
|
if len(self.result_transcripts) > 0:
|
|
return self.result_transcripts[0]
|
|
else:
|
|
return ''
|
|
|
|
def get_word_time_stamp(self):
|
|
"""return token timestamp result.
|
|
|
|
Returns:
|
|
list: List of ('w':token, 'bg':time, 'ed':time)
|
|
"""
|
|
return self.word_time_stamp
|
|
|
|
@paddle.no_grad()
|
|
def rescoring(self):
|
|
"""Second-Pass Decoding,
|
|
only for conformer and transformer model.
|
|
"""
|
|
if "deepspeech2" in self.model_type:
|
|
logger.info("deepspeech2 not support rescoring decoding.")
|
|
return
|
|
|
|
if "attention_rescoring" != self.ctc_decode_config.decoding_method:
|
|
logger.info(
|
|
f"decoding method not match: {self.ctc_decode_config.decoding_method}, need attention_rescoring"
|
|
)
|
|
return
|
|
|
|
logger.info("rescoring the final result")
|
|
|
|
# last decoding for last audio
|
|
self.searcher.finalize_search()
|
|
# update beam search results
|
|
self.update_result()
|
|
|
|
beam_size = self.ctc_decode_config.beam_size
|
|
hyps = self.searcher.get_hyps()
|
|
if hyps is None or len(hyps) == 0:
|
|
logger.info("No Hyps!")
|
|
return
|
|
|
|
# rescore by decoder post probability
|
|
|
|
# assert len(hyps) == beam_size
|
|
# list of Tensor
|
|
hyp_list = []
|
|
for hyp in hyps:
|
|
hyp_content = hyp[0]
|
|
# Prevent the hyp is empty
|
|
if len(hyp_content) == 0:
|
|
hyp_content = (self.model.ctc.blank_id, )
|
|
|
|
hyp_content = paddle.to_tensor(
|
|
hyp_content, place=self.device, dtype=paddle.long)
|
|
hyp_list.append(hyp_content)
|
|
|
|
hyps_pad = pad_sequence(
|
|
hyp_list, batch_first=True, padding_value=self.model.ignore_id)
|
|
hyps_lens = paddle.to_tensor(
|
|
[len(hyp[0]) for hyp in hyps], place=self.device,
|
|
dtype=paddle.long) # (beam_size,)
|
|
hyps_pad, _ = add_sos_eos(hyps_pad, self.model.sos, self.model.eos,
|
|
self.model.ignore_id)
|
|
hyps_lens = hyps_lens + 1 # Add <sos> at begining
|
|
|
|
encoder_out = self.encoder_out.repeat(beam_size, 1, 1)
|
|
encoder_mask = paddle.ones(
|
|
(beam_size, 1, encoder_out.shape[1]), dtype=paddle.bool)
|
|
decoder_out, _ = self.model.decoder(
|
|
encoder_out, encoder_mask, hyps_pad,
|
|
hyps_lens) # (beam_size, max_hyps_len, vocab_size)
|
|
# ctc score in ln domain
|
|
decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1)
|
|
decoder_out = decoder_out.numpy()
|
|
|
|
# Only use decoder score for rescoring
|
|
best_score = -float('inf')
|
|
best_index = 0
|
|
# hyps is List[(Text=List[int], Score=float)], len(hyps)=beam_size
|
|
for i, hyp in enumerate(hyps):
|
|
score = 0.0
|
|
for j, w in enumerate(hyp[0]):
|
|
score += decoder_out[i][j][w]
|
|
|
|
# last decoder output token is `eos`, for laste decoder input token.
|
|
score += decoder_out[i][len(hyp[0])][self.model.eos]
|
|
# add ctc score (which in ln domain)
|
|
score += hyp[1] * self.ctc_decode_config.ctc_weight
|
|
|
|
if score > best_score:
|
|
best_score = score
|
|
best_index = i
|
|
|
|
# update the one best result
|
|
# hyps stored the beam results and each fields is:
|
|
|
|
logger.info(f"best hyp index: {best_index}")
|
|
# logger.info(f'best result: {hyps[best_index]}')
|
|
# the field of the hyps is:
|
|
## asr results
|
|
# hyps[0][0]: the sentence word-id in the vocab with a tuple
|
|
# hyps[0][1]: the sentence decoding probability with all paths
|
|
## timestamp
|
|
# hyps[0][2]: viterbi_blank ending probability
|
|
# hyps[0][3]: viterbi_non_blank dending probability
|
|
# hyps[0][4]: current_token_prob,
|
|
# hyps[0][5]: times_viterbi_blank ending timestamp,
|
|
# hyps[0][6]: times_titerbi_non_blank encding timestamp.
|
|
self.hyps = [hyps[best_index][0]]
|
|
logger.info(f"best hyp ids: {self.hyps}")
|
|
|
|
# update the hyps time stamp
|
|
self.time_stamp = hyps[best_index][5] if hyps[best_index][2] > hyps[
|
|
best_index][3] else hyps[best_index][6]
|
|
logger.info(f"time stamp: {self.time_stamp}")
|
|
|
|
# update one best result
|
|
self.update_result()
|
|
|
|
# update each word start and end time stamp
|
|
# decoding frame to audio frame
|
|
decode_frame_shift = self.model.encoder.embed.subsampling_rate
|
|
decode_frame_shift_in_sec = decode_frame_shift * (self.n_shift /
|
|
self.sample_rate)
|
|
logger.info(f"decode frame shift in sec: {decode_frame_shift_in_sec}")
|
|
|
|
global_offset_in_sec = self.global_frame_offset * self.frame_shift_in_ms / 1000.0
|
|
logger.info(f"global offset: {global_offset_in_sec} sec.")
|
|
|
|
word_time_stamp = []
|
|
for idx, _ in enumerate(self.time_stamp):
|
|
start = (self.time_stamp[idx - 1] + self.time_stamp[idx]
|
|
) / 2.0 if idx > 0 else 0
|
|
start = start * decode_frame_shift_in_sec
|
|
|
|
end = (self.time_stamp[idx] + self.time_stamp[idx + 1]
|
|
) / 2.0 if idx < len(self.time_stamp) - 1 else self.offset
|
|
|
|
end = end * decode_frame_shift_in_sec
|
|
word_time_stamp.append({
|
|
"w": self.result_transcripts[0][idx],
|
|
"bg": global_offset_in_sec + start,
|
|
"ed": global_offset_in_sec + end
|
|
})
|
|
# logger.info(f"{word_time_stamp[-1]}")
|
|
|
|
self.word_time_stamp = word_time_stamp
|
|
logger.info(f"word time stamp: {self.word_time_stamp}")
|
|
|
|
|
|
class ASRServerExecutor(ASRExecutor):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.task_resource = CommonTaskResource(
|
|
task='asr', model_format='dynamic', inference_mode='online')
|
|
|
|
def update_config(self) -> None:
|
|
if "deepspeech2" in self.model_type:
|
|
with UpdateConfig(self.config):
|
|
# download lm
|
|
self.config.decode.lang_model_path = os.path.join(
|
|
MODEL_HOME, 'language_model',
|
|
self.config.decode.lang_model_path)
|
|
|
|
lm_url = self.task_resource.res_dict['lm_url']
|
|
lm_md5 = self.task_resource.res_dict['lm_md5']
|
|
logger.info(f"Start to load language model {lm_url}")
|
|
self.download_lm(
|
|
lm_url,
|
|
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
|
|
elif "conformer" in self.model_type or "transformer" in self.model_type:
|
|
with UpdateConfig(self.config):
|
|
logger.info("start to create the stream conformer asr engine")
|
|
# update the decoding method
|
|
if self.decode_method:
|
|
self.config.decode.decoding_method = self.decode_method
|
|
# update num_decoding_left_chunks
|
|
if self.num_decoding_left_chunks:
|
|
assert self.num_decoding_left_chunks == -1 or self.num_decoding_left_chunks >= 0, "num_decoding_left_chunks should be -1 or >=0"
|
|
self.config.decode.num_decoding_left_chunks = self.num_decoding_left_chunks
|
|
# we only support ctc_prefix_beam_search and attention_rescoring dedoding method
|
|
# Generally we set the decoding_method to attention_rescoring
|
|
if self.config.decode.decoding_method not in [
|
|
"ctc_prefix_beam_search", "attention_rescoring"
|
|
]:
|
|
logger.info(
|
|
"we set the decoding_method to attention_rescoring")
|
|
self.config.decode.decoding_method = "attention_rescoring"
|
|
|
|
assert self.config.decode.decoding_method in [
|
|
"ctc_prefix_beam_search", "attention_rescoring"
|
|
], f"we only support ctc_prefix_beam_search and attention_rescoring dedoding method, current decoding method is {self.config.decode.decoding_method}"
|
|
else:
|
|
raise Exception(f"not support: {self.model_type}")
|
|
|
|
def init_model(self) -> None:
|
|
if "deepspeech2" in self.model_type:
|
|
# AM predictor
|
|
logger.info("ASR engine start to init the am predictor")
|
|
self.am_predictor = init_predictor(
|
|
model_file=self.am_model,
|
|
params_file=self.am_params,
|
|
predictor_conf=self.am_predictor_conf)
|
|
elif "conformer" in self.model_type or "transformer" in self.model_type:
|
|
# load model
|
|
# model_type: {model_name}_{dataset}
|
|
model_name = self.model_type[:self.model_type.rindex('_')]
|
|
logger.info(f"model name: {model_name}")
|
|
model_class = self.task_resource.get_model_class(model_name)
|
|
model = model_class.from_config(self.config)
|
|
self.model = model
|
|
self.model.set_state_dict(paddle.load(self.am_model))
|
|
self.model.eval()
|
|
else:
|
|
raise Exception(f"not support: {self.model_type}")
|
|
|
|
def _init_from_path(self,
|
|
model_type: str=None,
|
|
am_model: Optional[os.PathLike]=None,
|
|
am_params: Optional[os.PathLike]=None,
|
|
lang: str='zh',
|
|
sample_rate: int=16000,
|
|
cfg_path: Optional[os.PathLike]=None,
|
|
decode_method: str='attention_rescoring',
|
|
num_decoding_left_chunks: int=-1,
|
|
am_predictor_conf: dict=None):
|
|
"""
|
|
Init model and other resources from a specific path.
|
|
"""
|
|
if not model_type or not lang or not sample_rate:
|
|
logger.error(
|
|
"The model type or lang or sample rate is None, please input an valid server parameter yaml"
|
|
)
|
|
return False
|
|
|
|
self.model_type = model_type
|
|
self.sample_rate = sample_rate
|
|
self.decode_method = decode_method
|
|
self.num_decoding_left_chunks = num_decoding_left_chunks
|
|
# conf for paddleinference predictor or onnx
|
|
self.am_predictor_conf = am_predictor_conf
|
|
logger.info(f"model_type: {self.model_type}")
|
|
|
|
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
|
|
tag = model_type + '-' + lang + '-' + sample_rate_str
|
|
self.task_resource.set_task_model(model_tag=tag)
|
|
|
|
if cfg_path is None or am_model is None or am_params is None:
|
|
self.res_path = self.task_resource.res_dir
|
|
self.cfg_path = os.path.join(
|
|
self.res_path, self.task_resource.res_dict['cfg_path'])
|
|
|
|
self.am_model = os.path.join(self.res_path,
|
|
self.task_resource.res_dict['model'])
|
|
self.am_params = os.path.join(self.res_path,
|
|
self.task_resource.res_dict['params'])
|
|
else:
|
|
self.cfg_path = os.path.abspath(cfg_path)
|
|
self.am_model = os.path.abspath(am_model)
|
|
self.am_params = os.path.abspath(am_params)
|
|
self.res_path = os.path.dirname(
|
|
os.path.dirname(os.path.abspath(self.cfg_path)))
|
|
|
|
logger.info("Load the pretrained model:")
|
|
logger.info(f" tag = {tag}")
|
|
logger.info(f" res_path: {self.res_path}")
|
|
logger.info(f" cfg path: {self.cfg_path}")
|
|
logger.info(f" am_model path: {self.am_model}")
|
|
logger.info(f" am_params path: {self.am_params}")
|
|
|
|
#Init body.
|
|
self.config = CfgNode(new_allowed=True)
|
|
self.config.merge_from_file(self.cfg_path)
|
|
|
|
if self.config.spm_model_prefix:
|
|
self.config.spm_model_prefix = os.path.join(
|
|
self.res_path, self.config.spm_model_prefix)
|
|
logger.info(f"spm model path: {self.config.spm_model_prefix}")
|
|
|
|
self.vocab = self.config.vocab_filepath
|
|
|
|
self.text_feature = TextFeaturizer(
|
|
unit_type=self.config.unit_type,
|
|
vocab=self.config.vocab_filepath,
|
|
spm_model_prefix=self.config.spm_model_prefix)
|
|
|
|
self.update_config()
|
|
|
|
# AM predictor
|
|
self.init_model()
|
|
|
|
logger.info(f"create the {model_type} model success")
|
|
return True
|
|
|
|
|
|
class ASREngine(BaseEngine):
|
|
"""ASR server resource
|
|
|
|
Args:
|
|
metaclass: Defaults to Singleton.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(ASREngine, self).__init__()
|
|
|
|
def init_model(self) -> bool:
|
|
if not self.executor._init_from_path(
|
|
model_type=self.config.model_type,
|
|
am_model=self.config.am_model,
|
|
am_params=self.config.am_params,
|
|
lang=self.config.lang,
|
|
sample_rate=self.config.sample_rate,
|
|
cfg_path=self.config.cfg_path,
|
|
decode_method=self.config.decode_method,
|
|
num_decoding_left_chunks=self.config.num_decoding_left_chunks,
|
|
am_predictor_conf=self.config.am_predictor_conf):
|
|
return False
|
|
return True
|
|
|
|
def init(self, config: dict) -> bool:
|
|
"""init engine resource
|
|
|
|
Args:
|
|
config_file (str): config file
|
|
|
|
Returns:
|
|
bool: init failed or success
|
|
"""
|
|
self.config = config
|
|
self.executor = ASRServerExecutor()
|
|
|
|
try:
|
|
self.device = self.config.get("device", paddle.get_device())
|
|
paddle.set_device(self.device)
|
|
except BaseException as e:
|
|
logger.error(
|
|
f"Set device failed, please check if device '{self.device}' is already used and the parameter 'device' in the yaml file"
|
|
)
|
|
logger.error(
|
|
"If all GPU or XPU is used, you can set the server to 'cpu'")
|
|
sys.exit(-1)
|
|
|
|
logger.info(f"paddlespeech_server set the device: {self.device}")
|
|
|
|
if not self.init_model():
|
|
logger.error(
|
|
"Init the ASR server occurs error, please check the server configuration yaml"
|
|
)
|
|
return False
|
|
|
|
logger.info("Initialize ASR server engine successfully.")
|
|
return True
|
|
|
|
def new_handler(self):
|
|
"""New handler from model.
|
|
|
|
Returns:
|
|
PaddleASRConnectionHanddler: asr handler instance
|
|
"""
|
|
return PaddleASRConnectionHanddler(self)
|
|
|
|
def preprocess(self, *args, **kwargs):
|
|
raise NotImplementedError("Online not using this.")
|
|
|
|
def run(self, *args, **kwargs):
|
|
raise NotImplementedError("Online not using this.")
|
|
|
|
def postprocess(self):
|
|
raise NotImplementedError("Online not using this.")
|