You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/utils/error_rate.py

361 lines
13 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This module provides functions to calculate error rate in different level.
e.g. wer for word-level, cer for char-level.
"""
import editdistance
import numpy as np
import logging
import sys
from itertools import groupby
__all__ = ['word_errors', 'char_errors', 'wer', 'cer', "ErrorCalculator"]
def _levenshtein_distance(ref, hyp):
"""Levenshtein distance is a string metric for measuring the difference
between two sequences. Informally, the levenshtein disctance is defined as
the minimum number of single-character edits (substitutions, insertions or
deletions) required to change one word into the other. We can naturally
extend the edits to word level when calculate levenshtein disctance for
two sentences.
"""
m = len(ref)
n = len(hyp)
# special case
if ref == hyp:
return 0
if m == 0:
return n
if n == 0:
return m
if m < n:
ref, hyp = hyp, ref
m, n = n, m
# use O(min(m, n)) space
distance = np.zeros((2, n + 1), dtype=np.int32)
# initialize distance matrix
for j in range(n + 1):
distance[0][j] = j
# calculate levenshtein distance
for i in range(1, m + 1):
prev_row_idx = (i - 1) % 2
cur_row_idx = i % 2
distance[cur_row_idx][0] = i
for j in range(1, n + 1):
if ref[i - 1] == hyp[j - 1]:
distance[cur_row_idx][j] = distance[prev_row_idx][j - 1]
else:
s_num = distance[prev_row_idx][j - 1] + 1
i_num = distance[cur_row_idx][j - 1] + 1
d_num = distance[prev_row_idx][j] + 1
distance[cur_row_idx][j] = min(s_num, i_num, d_num)
return distance[m % 2][n]
def word_errors(reference, hypothesis, ignore_case=False, delimiter=' '):
"""Compute the levenshtein distance between reference sequence and
hypothesis sequence in word-level.
:param reference: The reference sentence.
:type reference: str
:param hypothesis: The hypothesis sentence.
:type hypothesis: str
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:param delimiter: Delimiter of input sentences.
:type delimiter: char
:return: Levenshtein distance and word number of reference sentence.
:rtype: list
"""
if ignore_case:
reference = reference.lower()
hypothesis = hypothesis.lower()
ref_words = list(filter(None, reference.split(delimiter)))
hyp_words = list(filter(None, hypothesis.split(delimiter)))
edit_distance = _levenshtein_distance(ref_words, hyp_words)
# `editdistance.eavl precision` less than `_levenshtein_distance`
# edit_distance = editdistance.eval(ref_words, hyp_words)
return float(edit_distance), len(ref_words)
def char_errors(reference, hypothesis, ignore_case=False, remove_space=False):
"""Compute the levenshtein distance between reference sequence and
hypothesis sequence in char-level.
:param reference: The reference sentence.
:type reference: str
:param hypothesis: The hypothesis sentence.
:type hypothesis: str
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:param remove_space: Whether remove internal space characters
:type remove_space: bool
:return: Levenshtein distance and length of reference sentence.
:rtype: list
"""
if ignore_case:
reference = reference.lower()
hypothesis = hypothesis.lower()
join_char = ' '
if remove_space:
join_char = ''
reference = join_char.join(list(filter(None, reference.split(' '))))
hypothesis = join_char.join(list(filter(None, hypothesis.split(' '))))
edit_distance = _levenshtein_distance(reference, hypothesis)
# `editdistance.eavl precision` less than `_levenshtein_distance`
# edit_distance = editdistance.eval(reference, hypothesis)
return float(edit_distance), len(reference)
def wer(reference, hypothesis, ignore_case=False, delimiter=' '):
"""Calculate word error rate (WER). WER compares reference text and
hypothesis text in word-level. WER is defined as:
.. math::
WER = (Sw + Dw + Iw) / Nw
where
.. code-block:: text
Sw is the number of words subsituted,
Dw is the number of words deleted,
Iw is the number of words inserted,
Nw is the number of words in the reference
We can use levenshtein distance to calculate WER. Please draw an attention
that empty items will be removed when splitting sentences by delimiter.
:param reference: The reference sentence.
:type reference: str
:param hypothesis: The hypothesis sentence.
:type hypothesis: str
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:param delimiter: Delimiter of input sentences.
:type delimiter: char
:return: Word error rate.
:rtype: float
:raises ValueError: If word number of reference is zero.
"""
edit_distance, ref_len = word_errors(reference, hypothesis, ignore_case,
delimiter)
if ref_len == 0:
raise ValueError("Reference's word number should be greater than 0.")
wer = float(edit_distance) / ref_len
return wer
def cer(reference, hypothesis, ignore_case=False, remove_space=False):
"""Calculate charactor error rate (CER). CER compares reference text and
hypothesis text in char-level. CER is defined as:
.. math::
CER = (Sc + Dc + Ic) / Nc
where
.. code-block:: text
Sc is the number of characters substituted,
Dc is the number of characters deleted,
Ic is the number of characters inserted
Nc is the number of characters in the reference
We can use levenshtein distance to calculate CER. Chinese input should be
encoded to unicode. Please draw an attention that the leading and tailing
space characters will be truncated and multiple consecutive space
characters in a sentence will be replaced by one space character.
:param reference: The reference sentence.
:type reference: str
:param hypothesis: The hypothesis sentence.
:type hypothesis: str
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:param remove_space: Whether remove internal space characters
:type remove_space: bool
:return: Character error rate.
:rtype: float
:raises ValueError: If the reference length is zero.
"""
edit_distance, ref_len = char_errors(reference, hypothesis, ignore_case,
remove_space)
if ref_len == 0:
raise ValueError("Length of reference should be greater than 0.")
cer = float(edit_distance) / ref_len
return cer
class ErrorCalculator():
"""Calculate CER and WER for E2E_ASR and CTC models during training.
:param y_hats: numpy array with predicted text
:param y_pads: numpy array with true (target) text
:param char_list: List[str]
:param sym_space: <space>
:param sym_blank: <blank>
:return:
"""
def __init__(
self, char_list, sym_space, sym_blank, report_cer=False, report_wer=False
):
"""Construct an ErrorCalculator object."""
super().__init__()
self.report_cer = report_cer
self.report_wer = report_wer
self.char_list = char_list
self.space = sym_space
self.blank = sym_blank
self.idx_blank = self.char_list.index(self.blank)
if self.space in self.char_list:
self.idx_space = self.char_list.index(self.space)
else:
self.idx_space = None
def __call__(self, ys_hat, ys_pad, is_ctc=False):
"""Calculate sentence-level WER/CER score.
:param paddle.Tensor ys_hat: prediction (batch, seqlen)
:param paddle.Tensor ys_pad: reference (batch, seqlen)
:param bool is_ctc: calculate CER score for CTC
:return: sentence-level WER score
:rtype float
:return: sentence-level CER score
:rtype float
"""
cer, wer = None, None
if is_ctc:
return self.calculate_cer_ctc(ys_hat, ys_pad)
elif not self.report_cer and not self.report_wer:
return cer, wer
seqs_hat, seqs_true = self.convert_to_char(ys_hat, ys_pad)
if self.report_cer:
cer = self.calculate_cer(seqs_hat, seqs_true)
if self.report_wer:
wer = self.calculate_wer(seqs_hat, seqs_true)
return cer, wer
def calculate_cer_ctc(self, ys_hat, ys_pad):
"""Calculate sentence-level CER score for CTC.
:param paddle.Tensor ys_hat: prediction (batch, seqlen)
:param paddle.Tensor ys_pad: reference (batch, seqlen)
:return: average sentence-level CER score
:rtype float
"""
cers, char_ref_lens = [], []
for i, y in enumerate(ys_hat):
y_hat = [x[0] for x in groupby(y)]
y_true = ys_pad[i]
seq_hat, seq_true = [], []
for idx in y_hat:
idx = int(idx)
if idx != -1 and idx != self.idx_blank and idx != self.idx_space:
seq_hat.append(self.char_list[int(idx)])
for idx in y_true:
idx = int(idx)
if idx != -1 and idx != self.idx_blank and idx != self.idx_space:
seq_true.append(self.char_list[int(idx)])
hyp_chars = "".join(seq_hat)
ref_chars = "".join(seq_true)
if len(ref_chars) > 0:
cers.append(editdistance.eval(hyp_chars, ref_chars))
char_ref_lens.append(len(ref_chars))
cer_ctc = float(sum(cers)) / sum(char_ref_lens) if cers else None
return cer_ctc
def convert_to_char(self, ys_hat, ys_pad):
"""Convert index to character.
:param paddle.Tensor seqs_hat: prediction (batch, seqlen)
:param paddle.Tensor seqs_true: reference (batch, seqlen)
:return: token list of prediction
:rtype list
:return: token list of reference
:rtype list
"""
seqs_hat, seqs_true = [], []
for i, y_hat in enumerate(ys_hat):
y_true = ys_pad[i]
eos_true = np.where(y_true == -1)[0]
ymax = eos_true[0] if len(eos_true) > 0 else len(y_true)
# NOTE: padding index (-1) in y_true is used to pad y_hat
seq_hat = [self.char_list[int(idx)] for idx in y_hat[:ymax]]
seq_true = [self.char_list[int(idx)] for idx in y_true if int(idx) != -1]
seq_hat_text = "".join(seq_hat).replace(self.space, " ")
seq_hat_text = seq_hat_text.replace(self.blank, "")
seq_true_text = "".join(seq_true).replace(self.space, " ")
seqs_hat.append(seq_hat_text)
seqs_true.append(seq_true_text)
return seqs_hat, seqs_true
def calculate_cer(self, seqs_hat, seqs_true):
"""Calculate sentence-level CER score.
:param list seqs_hat: prediction
:param list seqs_true: reference
:return: average sentence-level CER score
:rtype float
"""
char_eds, char_ref_lens = [], []
for i, seq_hat_text in enumerate(seqs_hat):
seq_true_text = seqs_true[i]
hyp_chars = seq_hat_text.replace(" ", "")
ref_chars = seq_true_text.replace(" ", "")
char_eds.append(editdistance.eval(hyp_chars, ref_chars))
char_ref_lens.append(len(ref_chars))
return float(sum(char_eds)) / sum(char_ref_lens)
def calculate_wer(self, seqs_hat, seqs_true):
"""Calculate sentence-level WER score.
:param list seqs_hat: prediction
:param list seqs_true: reference
:return: average sentence-level WER score
:rtype float
"""
word_eds, word_ref_lens = [], []
for i, seq_hat_text in enumerate(seqs_hat):
seq_true_text = seqs_true[i]
hyp_words = seq_hat_text.split()
ref_words = seq_true_text.split()
word_eds.append(editdistance.eval(hyp_words, ref_words))
word_ref_lens.append(len(ref_words))
return float(sum(word_eds)) / sum(word_ref_lens)