You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
1.8 KiB
70 lines
1.8 KiB
"""Language model interface."""
|
|
|
|
import argparse
|
|
|
|
from deepspeech.decoders.scorers.scorer_interface import ScorerInterface
|
|
from deepspeech.utils.dynamic_import import dynamic_import
|
|
|
|
class LMInterface(ScorerInterface):
|
|
"""LM Interface model implementation."""
|
|
|
|
@staticmethod
|
|
def add_arguments(parser):
|
|
"""Add arguments to command line argument parser."""
|
|
return parser
|
|
|
|
@classmethod
|
|
def build(cls, n_vocab: int, **kwargs):
|
|
"""Initialize this class with python-level args.
|
|
|
|
Args:
|
|
idim (int): The number of vocabulary.
|
|
|
|
Returns:
|
|
LMinterface: A new instance of LMInterface.
|
|
|
|
"""
|
|
args = argparse.Namespace(**kwargs)
|
|
return cls(n_vocab, args)
|
|
|
|
def forward(self, x, t):
|
|
"""Compute LM loss value from buffer sequences.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input ids. (batch, len)
|
|
t (torch.Tensor): Target ids. (batch, len)
|
|
|
|
Returns:
|
|
tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Tuple of
|
|
loss to backward (scalar),
|
|
negative log-likelihood of t: -log p(t) (scalar) and
|
|
the number of elements in x (scalar)
|
|
|
|
Notes:
|
|
The last two return values are used
|
|
in perplexity: p(t)^{-n} = exp(-log p(t) / n)
|
|
|
|
"""
|
|
raise NotImplementedError("forward method is not implemented")
|
|
|
|
|
|
predefined_lms = {
|
|
"transformer": "deepspeech.models.lm.transformer:TransformerLM",
|
|
}
|
|
|
|
def dynamic_import_lm(module):
|
|
"""Import LM class dynamically.
|
|
|
|
Args:
|
|
module (str): module_name:class_name or alias in `predefined_lms`
|
|
|
|
Returns:
|
|
type: LM class
|
|
|
|
"""
|
|
model_class = dynamic_import(module, predefined_lms)
|
|
assert issubclass(
|
|
model_class, LMInterface
|
|
), f"{module} does not implement LMInterface"
|
|
return model_class
|