You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/csmsc/jets
ljhzxc 84cc5fc98f
Update pretrained model in README (#3193)
2 years ago
..
conf [TTS] [黑客松]Add JETS (#3109) 2 years ago
local [TTS] [黑客松]Add JETS (#3109) 2 years ago
README.md Update pretrained model in README (#3193) 2 years ago
path.sh [TTS] [黑客松]Add JETS (#3109) 2 years ago
run.sh [TTS] [黑客松]Add JETS (#3109) 2 years ago

README.md

JETS with CSMSC

This example contains code used to train a JETS model with Chinese Standard Mandarin Speech Copus.

Dataset

Download and Extract

Download CSMSC from it's Official Website.

Get MFA Result and Extract

We use MFA to get phonemes and durations for JETS. You can download from here baker_alignment_tone.tar.gz, or train your MFA model reference to mfa example of our repo.

Get Started

Assume the path to the dataset is ~/datasets/BZNSYP. Assume the path to the MFA result of CSMSC is ./baker_alignment_tone. Run the command below to

  1. source path.
  2. preprocess the dataset.
  3. train the model.
  4. synthesize wavs.
    • synthesize waveform from metadata.jsonl.
    • synthesize waveform from a text file.
./run.sh

You can choose a range of stages you want to run, or set stage equal to stop-stage to use only one stage, for example, running the following command will only preprocess the dataset.

./run.sh --stage 0 --stop-stage 0

Data Preprocessing

./local/preprocess.sh ${conf_path}

When it is done. A dump folder is created in the current directory. The structure of the dump folder is listed below.

dump
├── dev
│   ├── norm
│   └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│   ├── norm
│   └── raw
└── train
    ├── feats_stats.npy
    ├── norm
    └── raw

The dataset is split into 3 parts, namely train, dev, and test, each of which contains a norm and raw subfolder. The raw folder contains wave、mel spectrogram、speech、pitch and energy features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in dump/train/feats_stats.npy.

Also, there is a metadata.jsonl in each subfolder. It is a table-like file that contains phones, text_lengths, the path of feats, feats_lengths, the path of pitch features, the path of energy features, the path of raw waves, speaker, and the id of each utterance.

Model Training

CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}

./local/train.sh calls ${BIN_DIR}/train.py. Here's the complete help message.

usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
                [--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
                [--ngpu NGPU] [--phones-dict PHONES_DICT]

Train a JETS model.

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       config file to overwrite default config.
  --train-metadata TRAIN_METADATA
                        training data.
  --dev-metadata DEV_METADATA
                        dev data.
  --output-dir OUTPUT_DIR
                        output dir.
  --ngpu NGPU           if ngpu == 0, use cpu.
  --phones-dict PHONES_DICT
                        phone vocabulary file.
  1. --config is a config file in yaml format to overwrite the default config, which can be found at conf/default.yaml.
  2. --train-metadata and --dev-metadata should be the metadata file in the normalized subfolder of train and dev in the dump folder.
  3. --output-dir is the directory to save the results of the experiment. Checkpoints are saved in checkpoints/ inside this directory.
  4. --ngpu is the number of gpus to use, if ngpu == 0, use cpu.
  5. --phones-dict is the path of the phone vocabulary file.

Synthesizing

./local/synthesize.sh calls ${BIN_DIR}/synthesize.py, which can synthesize waveform from metadata.jsonl.

CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}

./local/synthesize_e2e.sh calls ${BIN_DIR}/synthesize_e2e.py, which can synthesize waveform from text file.

CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name}

Pretrained Model

The pretrained model can be downloaded here:

The static model can be downloaded here: