You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/speechx/speechx/frontend/audio/linear_spectrogram.cc

109 lines
4.0 KiB

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/audio/linear_spectrogram.h"
#include "kaldi/base/kaldi-math.h"
#include "kaldi/feat/feature-common.h"
#include "kaldi/feat/feature-functions.h"
#include "kaldi/matrix/matrix-functions.h"
namespace ppspeech {
using kaldi::int32;
using kaldi::BaseFloat;
using kaldi::Vector;
using kaldi::SubVector;
using kaldi::VectorBase;
using kaldi::Matrix;
using std::vector;
LinearSpectrogram::LinearSpectrogram(
const LinearSpectrogramOptions& opts,
std::unique_ptr<FrontendInterface> base_extractor)
: opts_(opts), feature_window_funtion_(opts.frame_opts) {
base_extractor_ = std::move(base_extractor);
int32 window_size = opts.frame_opts.WindowSize();
int32 window_shift = opts.frame_opts.WindowShift();
dim_ = window_size / 2 + 1;
chunk_sample_size_ =
static_cast<int32>(opts.streaming_chunk * opts.frame_opts.samp_freq);
hanning_window_energy_ = kaldi::VecVec(feature_window_funtion_.window,
feature_window_funtion_.window);
}
void LinearSpectrogram::Accept(const VectorBase<BaseFloat>& inputs) {
base_extractor_->Accept(inputs);
}
bool LinearSpectrogram::Read(Vector<BaseFloat>* feats) {
Vector<BaseFloat> input_feats(chunk_sample_size_);
bool flag = base_extractor_->Read(&input_feats);
if (flag == false || input_feats.Dim() == 0) return false;
int32 feat_len = input_feats.Dim();
int32 left_len = reminded_wav_.Dim();
Vector<BaseFloat> waves(feat_len + left_len);
waves.Range(0, left_len).CopyFromVec(reminded_wav_);
waves.Range(left_len, feat_len).CopyFromVec(input_feats);
Compute(waves, feats);
int32 frame_shift = opts_.frame_opts.WindowShift();
int32 num_frames = kaldi::NumFrames(waves.Dim(), opts_.frame_opts);
int32 left_samples = waves.Dim() - frame_shift * num_frames;
reminded_wav_.Resize(left_samples);
reminded_wav_.CopyFromVec(
waves.Range(frame_shift * num_frames, left_samples));
return true;
}
// Compute spectrogram feat
bool LinearSpectrogram::Compute(const Vector<BaseFloat>& waves,
Vector<BaseFloat>* feats) {
int32 num_samples = waves.Dim();
int32 frame_length = opts_.frame_opts.WindowSize();
int32 sample_rate = opts_.frame_opts.samp_freq;
BaseFloat scale = 2.0 / (hanning_window_energy_ * sample_rate);
if (num_samples < frame_length) {
return true;
}
int32 num_frames = kaldi::NumFrames(num_samples, opts_.frame_opts);
feats->Resize(num_frames * dim_);
Vector<BaseFloat> window;
for (int frame_idx = 0; frame_idx < num_frames; ++frame_idx) {
kaldi::ExtractWindow(0,
waves,
frame_idx,
opts_.frame_opts,
feature_window_funtion_,
&window,
NULL);
SubVector<BaseFloat> output_row(feats->Data() + frame_idx * dim_, dim_);
window.Resize(frame_length, kaldi::kCopyData);
RealFft(&window, true);
kaldi::ComputePowerSpectrum(&window);
SubVector<BaseFloat> power_spectrum(window, 0, dim_);
power_spectrum.Scale(scale);
power_spectrum(0) = power_spectrum(0) / 2;
power_spectrum(dim_ - 1) = power_spectrum(dim_ - 1) / 2;
power_spectrum.Add(1e-14);
power_spectrum.ApplyLog();
output_row.CopyFromVec(power_spectrum);
}
return true;
}
} // namespace ppspeech