You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/decoders/decoders_deprecated.py

249 lines
10 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains various CTC decoders."""
from itertools import groupby
import numpy as np
from math import log
import multiprocessing
def ctc_greedy_decoder(probs_seq, vocabulary):
"""CTC greedy (best path) decoder.
Path consisting of the most probable tokens are further post-processed to
remove consecutive repetitions and all blanks.
:param probs_seq: 2-D list of probabilities over the vocabulary for each
character. Each element is a list of float probabilities
for one character.
:type probs_seq: list
:param vocabulary: Vocabulary list.
:type vocabulary: list
:return: Decoding result string.
:rtype: baseline
"""
# dimension verification
for probs in probs_seq:
if not len(probs) == len(vocabulary) + 1:
raise ValueError("probs_seq dimension mismatchedd with vocabulary")
# argmax to get the best index for each time step
max_index_list = list(np.array(probs_seq).argmax(axis=1))
# remove consecutive duplicate indexes
index_list = [index_group[0] for index_group in groupby(max_index_list)]
# remove blank indexes
blank_index = len(vocabulary)
index_list = [index for index in index_list if index != blank_index]
# convert index list to string
return ''.join([vocabulary[index] for index in index_list])
def ctc_beam_search_decoder(probs_seq,
beam_size,
vocabulary,
cutoff_prob=1.0,
cutoff_top_n=40,
ext_scoring_func=None,
nproc=False):
"""CTC Beam search decoder.
It utilizes beam search to approximately select top best decoding
labels and returning results in the descending order.
The implementation is based on Prefix Beam Search
(https://arxiv.org/abs/1408.2873), and the unclear part is
redesigned. Two important modifications: 1) in the iterative computation
of probabilities, the assignment operation is changed to accumulation for
one prefix may comes from different paths; 2) the if condition "if l^+ not
in A_prev then" after probabilities' computation is deprecated for it is
hard to understand and seems unnecessary.
:param probs_seq: 2-D list of probability distributions over each time
step, with each element being a list of normalized
probabilities over vocabulary and blank.
:type probs_seq: 2-D list
:param beam_size: Width for beam search.
:type beam_size: int
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param ext_scoring_func: External scoring function for
partially decoded sentence, e.g. word count
or language model.
:type external_scoring_func: callable
:param nproc: Whether the decoder used in multiprocesses.
:type nproc: bool
:return: List of tuples of log probability and sentence as decoding
results, in descending order of the probability.
:rtype: list
"""
# dimension check
for prob_list in probs_seq:
if not len(prob_list) == len(vocabulary) + 1:
raise ValueError("The shape of prob_seq does not match with the "
"shape of the vocabulary.")
# blank_id assign
blank_id = len(vocabulary)
# If the decoder called in the multiprocesses, then use the global scorer
# instantiated in ctc_beam_search_decoder_batch().
if nproc is True:
global ext_nproc_scorer
ext_scoring_func = ext_nproc_scorer
## initialize
# prefix_set_prev: the set containing selected prefixes
# probs_b_prev: prefixes' probability ending with blank in previous step
# probs_nb_prev: prefixes' probability ending with non-blank in previous step
prefix_set_prev = {'\t': 1.0}
probs_b_prev, probs_nb_prev = {'\t': 1.0}, {'\t': 0.0}
## extend prefix in loop
for time_step in range(len(probs_seq)):
# prefix_set_next: the set containing candidate prefixes
# probs_b_cur: prefixes' probability ending with blank in current step
# probs_nb_cur: prefixes' probability ending with non-blank in current step
prefix_set_next, probs_b_cur, probs_nb_cur = {}, {}, {}
prob_idx = list(enumerate(probs_seq[time_step]))
cutoff_len = len(prob_idx)
#If pruning is enabled
if cutoff_prob < 1.0 or cutoff_top_n < cutoff_len:
prob_idx = sorted(prob_idx, key=lambda asd: asd[1], reverse=True)
cutoff_len, cum_prob = 0, 0.0
for i in range(len(prob_idx)):
cum_prob += prob_idx[i][1]
cutoff_len += 1
if cum_prob >= cutoff_prob:
break
cutoff_len = min(cutoff_len, cutoff_top_n)
prob_idx = prob_idx[0:cutoff_len]
for l in prefix_set_prev:
if l not in prefix_set_next:
probs_b_cur[l], probs_nb_cur[l] = 0.0, 0.0
# extend prefix by travering prob_idx
for index in range(cutoff_len):
c, prob_c = prob_idx[index][0], prob_idx[index][1]
if c == blank_id:
probs_b_cur[l] += prob_c * (
probs_b_prev[l] + probs_nb_prev[l])
else:
last_char = l[-1]
new_char = vocabulary[c]
l_plus = l + new_char
if l_plus not in prefix_set_next:
probs_b_cur[l_plus], probs_nb_cur[l_plus] = 0.0, 0.0
if new_char == last_char:
probs_nb_cur[l_plus] += prob_c * probs_b_prev[l]
probs_nb_cur[l] += prob_c * probs_nb_prev[l]
elif new_char == ' ':
if (ext_scoring_func is None) or (len(l) == 1):
score = 1.0
else:
prefix = l[1:]
score = ext_scoring_func(prefix)
probs_nb_cur[l_plus] += score * prob_c * (
probs_b_prev[l] + probs_nb_prev[l])
else:
probs_nb_cur[l_plus] += prob_c * (
probs_b_prev[l] + probs_nb_prev[l])
# add l_plus into prefix_set_next
prefix_set_next[l_plus] = probs_nb_cur[
l_plus] + probs_b_cur[l_plus]
# add l into prefix_set_next
prefix_set_next[l] = probs_b_cur[l] + probs_nb_cur[l]
# update probs
probs_b_prev, probs_nb_prev = probs_b_cur, probs_nb_cur
## store top beam_size prefixes
prefix_set_prev = sorted(
prefix_set_next.items(), key=lambda asd: asd[1], reverse=True)
if beam_size < len(prefix_set_prev):
prefix_set_prev = prefix_set_prev[:beam_size]
prefix_set_prev = dict(prefix_set_prev)
beam_result = []
for seq, prob in prefix_set_prev.items():
if prob > 0.0 and len(seq) > 1:
result = seq[1:]
# score last word by external scorer
if (ext_scoring_func is not None) and (result[-1] != ' '):
prob = prob * ext_scoring_func(result)
log_prob = log(prob)
beam_result.append((log_prob, result))
else:
beam_result.append((float('-inf'), ''))
## output top beam_size decoding results
beam_result = sorted(beam_result, key=lambda asd: asd[0], reverse=True)
return beam_result
def ctc_beam_search_decoder_batch(probs_split,
beam_size,
vocabulary,
num_processes,
cutoff_prob=1.0,
cutoff_top_n=40,
ext_scoring_func=None):
"""CTC beam search decoder using multiple processes.
:param probs_seq: 3-D list with each element as an instance of 2-D list
of probabilities used by ctc_beam_search_decoder().
:type probs_seq: 3-D list
:param beam_size: Width for beam search.
:type beam_size: int
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param num_processes: Number of parallel processes.
:type num_processes: int
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param num_processes: Number of parallel processes.
:type num_processes: int
:param ext_scoring_func: External scoring function for
partially decoded sentence, e.g. word count
or language model.
:type external_scoring_function: callable
:return: List of tuples of log probability and sentence as decoding
results, in descending order of the probability.
:rtype: list
"""
if not num_processes > 0:
raise ValueError("Number of processes must be positive!")
# use global variable to pass the externnal scorer to beam search decoder
global ext_nproc_scorer
ext_nproc_scorer = ext_scoring_func
nproc = True
pool = multiprocessing.Pool(processes=num_processes)
results = []
for i, probs_list in enumerate(probs_split):
args = (probs_list, beam_size, vocabulary, cutoff_prob, cutoff_top_n,
None, nproc)
results.append(pool.apply_async(ctc_beam_search_decoder, args))
pool.close()
pool.join()
beam_search_results = [result.get() for result in results]
return beam_search_results