You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/audio/test/unit_test/test_backend.py

114 lines
3.0 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import librosa
import numpy as np
import paddleaudio
import pytest
TEST_FILE = './test/data/test_audio.wav'
def relative_err(a, b, real=True):
"""compute relative error of two matrices or vectors"""
if real:
return np.sum((a - b)**2) / (EPS + np.sum(a**2) + np.sum(b**2))
else:
err = np.sum((a.real - b.real)**2) / \
(EPS + np.sum(a.real**2) + np.sum(b.real**2))
err += np.sum((a.imag - b.imag)**2) / \
(EPS + np.sum(a.imag**2) + np.sum(b.imag**2))
return err
@pytest.mark.filterwarnings("ignore::DeprecationWarning")
def load_audio():
x, r = librosa.load(TEST_FILE, sr=16000)
print(f'librosa: mean: {np.mean(x)}, std:{np.std(x)}')
return x, r
# start testing
x, r = load_audio()
EPS = 1e-8
def test_load():
s, r = paddleaudio.load(TEST_FILE, sr=16000)
assert r == 16000
assert s.dtype == 'float32'
s, r = paddleaudio.load(
TEST_FILE, sr=16000, offset=1, duration=2, dtype='int16')
assert len(s) / r == 2.0
assert r == 16000
assert s.dtype == 'int16'
def test_depth_convert():
y = paddleaudio.depth_convert(x, 'int16')
assert len(y) == len(x)
assert y.dtype == 'int16'
assert np.max(y) <= 32767
assert np.min(y) >= -32768
assert np.std(y) > EPS
y = paddleaudio.depth_convert(x, 'int8')
assert len(y) == len(x)
assert y.dtype == 'int8'
assert np.max(y) <= 127
assert np.min(y) >= -128
assert np.std(y) > EPS
# test case for resample
rs_test_data = [
(32000, 'kaiser_fast'),
(16000, 'kaiser_fast'),
(8000, 'kaiser_fast'),
(32000, 'kaiser_best'),
(16000, 'kaiser_best'),
(8000, 'kaiser_best'),
(22050, 'kaiser_best'),
(44100, 'kaiser_best'),
]
@pytest.mark.parametrize('sr,mode', rs_test_data)
def test_resample(sr, mode):
y = paddleaudio.resample(x, 16000, sr, mode=mode)
factor = sr / 16000
err = relative_err(len(y), len(x) * factor)
print('err:', err)
assert err < EPS
def test_normalize():
y = paddleaudio.normalize(x, norm_type='linear', mul_factor=0.5)
assert np.max(y) < 0.5 + EPS
y = paddleaudio.normalize(x, norm_type='linear', mul_factor=2.0)
assert np.max(y) <= 2.0 + EPS
y = paddleaudio.normalize(x, norm_type='gaussian', mul_factor=1.0)
print('np.std(y):', np.std(y))
assert np.abs(np.std(y) - 1.0) < EPS
if __name__ == '__main__':
test_load()
test_depth_convert()
test_resample(22050, 'kaiser_fast')
test_normalize()