You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/frontend/zh_frontend.py

255 lines
11 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import Dict
from typing import List
import jieba.posseg as psg
import numpy as np
import paddle
from g2pM import G2pM
from pypinyin import lazy_pinyin
from pypinyin import Style
from paddlespeech.t2s.frontend.generate_lexicon import generate_lexicon
from paddlespeech.t2s.frontend.tone_sandhi import ToneSandhi
from paddlespeech.t2s.frontend.zh_normalization.text_normlization import TextNormalizer
class Frontend():
def __init__(self,
g2p_model="pypinyin",
phone_vocab_path=None,
tone_vocab_path=None):
self.tone_modifier = ToneSandhi()
self.text_normalizer = TextNormalizer()
self.punc = ":,;。?!“”‘’':,;.?!"
# g2p_model can be pypinyin and g2pM
self.g2p_model = g2p_model
if self.g2p_model == "g2pM":
self.g2pM_model = G2pM()
self.pinyin2phone = generate_lexicon(
with_tone=True, with_erhua=False)
self.must_erhua = {"小院儿", "胡同儿", "范儿", "老汉儿", "撒欢儿", "寻老礼儿", "妥妥儿"}
self.not_erhua = {
"虐儿", "为儿", "护儿", "瞒儿", "救儿", "替儿", "有儿", "一儿", "我儿", "俺儿", "妻儿",
"拐儿", "聋儿", "乞儿", "患儿", "幼儿", "孤儿", "婴儿", "婴幼儿", "连体儿", "脑瘫儿",
"流浪儿", "体弱儿", "混血儿", "蜜雪儿", "舫儿", "祖儿", "美儿", "应采儿", "可儿", "侄儿",
"孙儿", "侄孙儿", "女儿", "男儿", "红孩儿", "花儿", "虫儿", "马儿", "鸟儿", "猪儿", "猫儿",
"狗儿"
}
self.vocab_phones = {}
self.vocab_tones = {}
if phone_vocab_path:
with open(phone_vocab_path, 'rt') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
self.vocab_phones[phn] = int(id)
if tone_vocab_path:
with open(tone_vocab_path, 'rt') as f:
tone_id = [line.strip().split() for line in f.readlines()]
for tone, id in tone_id:
self.vocab_tones[tone] = int(id)
def _get_initials_finals(self, word: str) -> List[List[str]]:
initials = []
finals = []
if self.g2p_model == "pypinyin":
orig_initials = lazy_pinyin(
word, neutral_tone_with_five=True, style=Style.INITIALS)
orig_finals = lazy_pinyin(
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
for c, v in zip(orig_initials, orig_finals):
if re.match(r'i\d', v):
if c in ['z', 'c', 's']:
v = re.sub('i', 'ii', v)
elif c in ['zh', 'ch', 'sh', 'r']:
v = re.sub('i', 'iii', v)
initials.append(c)
finals.append(v)
elif self.g2p_model == "g2pM":
pinyins = self.g2pM_model(word, tone=True, char_split=False)
for pinyin in pinyins:
pinyin = pinyin.replace("u:", "v")
if pinyin in self.pinyin2phone:
initial_final_list = self.pinyin2phone[pinyin].split(" ")
if len(initial_final_list) == 2:
initials.append(initial_final_list[0])
finals.append(initial_final_list[1])
elif len(initial_final_list) == 1:
initials.append('')
finals.append(initial_final_list[1])
else:
# If it's not pinyin (possibly punctuation) or no conversion is required
initials.append(pinyin)
finals.append(pinyin)
return initials, finals
# if merge_sentences, merge all sentences into one phone sequence
def _g2p(self,
sentences: List[str],
merge_sentences: bool=True,
with_erhua: bool=True) -> List[List[str]]:
segments = sentences
phones_list = []
for seg in segments:
phones = []
seg_cut = psg.lcut(seg)
initials = []
finals = []
seg_cut = self.tone_modifier.pre_merge_for_modify(seg_cut)
for word, pos in seg_cut:
if pos == 'eng':
continue
sub_initials, sub_finals = self._get_initials_finals(word)
sub_finals = self.tone_modifier.modified_tone(word, pos,
sub_finals)
if with_erhua:
sub_initials, sub_finals = self._merge_erhua(
sub_initials, sub_finals, word, pos)
initials.append(sub_initials)
finals.append(sub_finals)
# assert len(sub_initials) == len(sub_finals) == len(word)
initials = sum(initials, [])
finals = sum(finals, [])
for c, v in zip(initials, finals):
# NOTE: post process for pypinyin outputs
# we discriminate i, ii and iii
if c and c not in self.punc:
phones.append(c)
if v and v not in self.punc:
phones.append(v)
# add sp between sentence (replace the last punc with sp)
if initials[-1] in self.punc:
phones.append('sp')
phones_list.append(phones)
if merge_sentences:
merge_list = sum(phones_list, [])
phones_list = []
phones_list.append(merge_list)
return phones_list
def _merge_erhua(self,
initials: List[str],
finals: List[str],
word: str,
pos: str) -> List[List[str]]:
if word not in self.must_erhua and (word in self.not_erhua or
pos in {"a", "j", "nr"}):
return initials, finals
new_initials = []
new_finals = []
assert len(finals) == len(word)
for i, phn in enumerate(finals):
if i == len(finals) - 1 and word[i] == "" and phn in {
"er2", "er5"
} and word[-2:] not in self.not_erhua and new_finals:
new_finals[-1] = new_finals[-1][:-1] + "r" + new_finals[-1][-1]
else:
new_finals.append(phn)
new_initials.append(initials[i])
return new_initials, new_finals
def _p2id(self, phonemes: List[str]) -> np.array:
# replace unk phone with sp
phonemes = [
phn if phn in self.vocab_phones else "sp" for phn in phonemes
]
phone_ids = [self.vocab_phones[item] for item in phonemes]
return np.array(phone_ids, np.int64)
def _t2id(self, tones: List[str]) -> np.array:
# replace unk phone with sp
tones = [tone if tone in self.vocab_tones else "0" for tone in tones]
tone_ids = [self.vocab_tones[item] for item in tones]
return np.array(tone_ids, np.int64)
def _get_phone_tone(self, phonemes: List[str],
get_tone_ids: bool=False) -> List[List[str]]:
phones = []
tones = []
if get_tone_ids and self.vocab_tones:
for full_phone in phonemes:
# split tone from finals
match = re.match(r'^(\w+)([012345])$', full_phone)
if match:
phone = match.group(1)
tone = match.group(2)
# if the merged erhua not in the vocab
# assume that the input is ['iaor3'] and 'iaor' not in self.vocab_phones, we split 'iaor' into ['iao','er']
# and the tones accordingly change from ['3'] to ['3','2'], while '2' is the tone of 'er2'
if len(phone) >= 2 and phone != "er" and phone[
-1] == 'r' and phone not in self.vocab_phones and phone[:
-1] in self.vocab_phones:
phones.append(phone[:-1])
phones.append("er")
tones.append(tone)
tones.append("2")
else:
phones.append(phone)
tones.append(tone)
else:
phones.append(full_phone)
tones.append('0')
else:
for phone in phonemes:
# if the merged erhua not in the vocab
# assume that the input is ['iaor3'] and 'iaor' not in self.vocab_phones, change ['iaor3'] to ['iao3','er2']
if len(phone) >= 3 and phone[:-1] != "er" and phone[
-2] == 'r' and phone not in self.vocab_phones and (
phone[:-2] + phone[-1]) in self.vocab_phones:
phones.append((phone[:-2] + phone[-1]))
phones.append("er2")
else:
phones.append(phone)
return phones, tones
def get_phonemes(self,
sentence: str,
merge_sentences: bool=True,
with_erhua: bool=True) -> List[List[str]]:
sentences = self.text_normalizer.normalize(sentence)
phonemes = self._g2p(
sentences, merge_sentences=merge_sentences, with_erhua=with_erhua)
return phonemes
def get_input_ids(
self,
sentence: str,
merge_sentences: bool=True,
get_tone_ids: bool=False) -> Dict[str, List[paddle.Tensor]]:
phonemes = self.get_phonemes(sentence, merge_sentences=merge_sentences)
result = {}
phones = []
tones = []
temp_phone_ids = []
temp_tone_ids = []
for part_phonemes in phonemes:
phones, tones = self._get_phone_tone(
part_phonemes, get_tone_ids=get_tone_ids)
if tones:
tone_ids = self._t2id(tones)
tone_ids = paddle.to_tensor(tone_ids)
temp_tone_ids.append(tone_ids)
if phones:
phone_ids = self._p2id(phones)
phone_ids = paddle.to_tensor(phone_ids)
temp_phone_ids.append(phone_ids)
if temp_tone_ids:
result["tone_ids"] = temp_tone_ids
if temp_phone_ids:
result["phone_ids"] = temp_phone_ids
return result