You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
221 lines
8.3 KiB
221 lines
8.3 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import time
|
|
from collections import defaultdict
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import distributed as dist
|
|
from paddle.io import DataLoader
|
|
from paddle.io import DistributedBatchSampler
|
|
|
|
from paddlespeech.t2s.data import dataset
|
|
from paddlespeech.t2s.exps.tacotron2.config import get_cfg_defaults
|
|
from paddlespeech.t2s.exps.tacotron2.ljspeech import LJSpeech
|
|
from paddlespeech.t2s.exps.tacotron2.ljspeech import LJSpeechCollector
|
|
from paddlespeech.t2s.models.tacotron2 import Tacotron2
|
|
from paddlespeech.t2s.models.tacotron2 import Tacotron2Loss
|
|
from paddlespeech.t2s.training.cli import default_argument_parser
|
|
from paddlespeech.t2s.training.experiment import ExperimentBase
|
|
from paddlespeech.t2s.utils import display
|
|
from paddlespeech.t2s.utils import mp_tools
|
|
|
|
|
|
class Experiment(ExperimentBase):
|
|
def compute_losses(self, inputs, outputs):
|
|
texts, mel_targets, plens, slens = inputs
|
|
|
|
mel_outputs = outputs["mel_output"]
|
|
mel_outputs_postnet = outputs["mel_outputs_postnet"]
|
|
attention_weight = outputs["alignments"]
|
|
if self.config.model.use_stop_token:
|
|
stop_logits = outputs["stop_logits"]
|
|
else:
|
|
stop_logits = None
|
|
|
|
losses = self.criterion(mel_outputs, mel_outputs_postnet, mel_targets,
|
|
attention_weight, slens, plens, stop_logits)
|
|
return losses
|
|
|
|
def train_batch(self):
|
|
start = time.time()
|
|
batch = self.read_batch()
|
|
data_loader_time = time.time() - start
|
|
|
|
self.optimizer.clear_grad()
|
|
self.model.train()
|
|
texts, mels, text_lens, output_lens = batch
|
|
outputs = self.model(texts, text_lens, mels, output_lens)
|
|
losses = self.compute_losses(batch, outputs)
|
|
loss = losses["loss"]
|
|
loss.backward()
|
|
self.optimizer.step()
|
|
iteration_time = time.time() - start
|
|
|
|
losses_np = {k: float(v) for k, v in losses.items()}
|
|
# logging
|
|
msg = "Rank: {}, ".format(dist.get_rank())
|
|
msg += "step: {}, ".format(self.iteration)
|
|
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time,
|
|
iteration_time)
|
|
msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_np.items())
|
|
self.logger.info(msg)
|
|
|
|
if dist.get_rank() == 0:
|
|
for k, v in losses_np.items():
|
|
self.visualizer.add_scalar(f"train_loss/{k}", v, self.iteration)
|
|
|
|
@mp_tools.rank_zero_only
|
|
@paddle.no_grad()
|
|
def valid(self):
|
|
valid_losses = defaultdict(list)
|
|
for i, batch in enumerate(self.valid_loader):
|
|
texts, mels, text_lens, output_lens = batch
|
|
outputs = self.model(texts, text_lens, mels, output_lens)
|
|
losses = self.compute_losses(batch, outputs)
|
|
for k, v in losses.items():
|
|
valid_losses[k].append(float(v))
|
|
|
|
attention_weights = outputs["alignments"]
|
|
self.visualizer.add_figure(
|
|
f"valid_sentence_{i}_alignments",
|
|
display.plot_alignment(attention_weights[0].numpy().T),
|
|
self.iteration)
|
|
self.visualizer.add_figure(
|
|
f"valid_sentence_{i}_target_spectrogram",
|
|
display.plot_spectrogram(mels[0].numpy().T), self.iteration)
|
|
self.visualizer.add_figure(
|
|
f"valid_sentence_{i}_predicted_spectrogram",
|
|
display.plot_spectrogram(outputs['mel_outputs_postnet'][0]
|
|
.numpy().T), self.iteration)
|
|
|
|
# write visual log
|
|
valid_losses = {k: np.mean(v) for k, v in valid_losses.items()}
|
|
|
|
# logging
|
|
msg = "Valid: "
|
|
msg += "step: {}, ".format(self.iteration)
|
|
msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in valid_losses.items())
|
|
self.logger.info(msg)
|
|
|
|
for k, v in valid_losses.items():
|
|
self.visualizer.add_scalar(f"valid/{k}", v, self.iteration)
|
|
|
|
def setup_model(self):
|
|
config = self.config
|
|
model = Tacotron2(
|
|
vocab_size=config.model.vocab_size,
|
|
d_mels=config.data.n_mels,
|
|
d_encoder=config.model.d_encoder,
|
|
encoder_conv_layers=config.model.encoder_conv_layers,
|
|
encoder_kernel_size=config.model.encoder_kernel_size,
|
|
d_prenet=config.model.d_prenet,
|
|
d_attention_rnn=config.model.d_attention_rnn,
|
|
d_decoder_rnn=config.model.d_decoder_rnn,
|
|
attention_filters=config.model.attention_filters,
|
|
attention_kernel_size=config.model.attention_kernel_size,
|
|
d_attention=config.model.d_attention,
|
|
d_postnet=config.model.d_postnet,
|
|
postnet_kernel_size=config.model.postnet_kernel_size,
|
|
postnet_conv_layers=config.model.postnet_conv_layers,
|
|
reduction_factor=config.model.reduction_factor,
|
|
p_encoder_dropout=config.model.p_encoder_dropout,
|
|
p_prenet_dropout=config.model.p_prenet_dropout,
|
|
p_attention_dropout=config.model.p_attention_dropout,
|
|
p_decoder_dropout=config.model.p_decoder_dropout,
|
|
p_postnet_dropout=config.model.p_postnet_dropout,
|
|
use_stop_token=config.model.use_stop_token)
|
|
|
|
if self.parallel:
|
|
model = paddle.DataParallel(model)
|
|
|
|
grad_clip = paddle.nn.ClipGradByGlobalNorm(
|
|
config.training.grad_clip_thresh)
|
|
optimizer = paddle.optimizer.Adam(
|
|
learning_rate=config.training.lr,
|
|
parameters=model.parameters(),
|
|
weight_decay=paddle.regularizer.L2Decay(
|
|
config.training.weight_decay),
|
|
grad_clip=grad_clip)
|
|
criterion = Tacotron2Loss(
|
|
use_stop_token_loss=config.model.use_stop_token,
|
|
use_guided_attention_loss=config.model.use_guided_attention_loss,
|
|
sigma=config.model.guided_attention_loss_sigma)
|
|
self.model = model
|
|
self.optimizer = optimizer
|
|
self.criterion = criterion
|
|
|
|
def setup_dataloader(self):
|
|
args = self.args
|
|
config = self.config
|
|
ljspeech_dataset = LJSpeech(args.data)
|
|
|
|
valid_set, train_set = dataset.split(ljspeech_dataset,
|
|
config.data.valid_size)
|
|
batch_fn = LJSpeechCollector(padding_idx=config.data.padding_idx)
|
|
|
|
if not self.parallel:
|
|
self.train_loader = DataLoader(
|
|
train_set,
|
|
batch_size=config.data.batch_size,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
collate_fn=batch_fn)
|
|
else:
|
|
sampler = DistributedBatchSampler(
|
|
train_set,
|
|
batch_size=config.data.batch_size,
|
|
shuffle=True,
|
|
drop_last=True)
|
|
self.train_loader = DataLoader(
|
|
train_set, batch_sampler=sampler, collate_fn=batch_fn)
|
|
|
|
self.valid_loader = DataLoader(
|
|
valid_set,
|
|
batch_size=config.data.batch_size,
|
|
shuffle=False,
|
|
drop_last=False,
|
|
collate_fn=batch_fn)
|
|
|
|
|
|
def main_sp(config, args):
|
|
exp = Experiment(config, args)
|
|
exp.setup()
|
|
exp.resume_or_load()
|
|
exp.run()
|
|
|
|
|
|
def main(config, args):
|
|
if args.nprocs > 1 and args.device == "gpu":
|
|
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
|
|
else:
|
|
main_sp(config, args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
config = get_cfg_defaults()
|
|
parser = default_argument_parser()
|
|
args = parser.parse_args()
|
|
if args.config:
|
|
config.merge_from_file(args.config)
|
|
if args.opts:
|
|
config.merge_from_list(args.opts)
|
|
config.freeze()
|
|
print(config)
|
|
print(args)
|
|
|
|
main(config, args)
|