You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/speedyspeech/synthesize_e2e.py

197 lines
6.8 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
from pathlib import Path
import numpy as np
import paddle
import soundfile as sf
import yaml
from paddle import jit
from paddle.static import InputSpec
from yacs.config import CfgNode
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator
from paddlespeech.t2s.models.parallel_wavegan import PWGInference
from paddlespeech.t2s.models.speedyspeech import SpeedySpeech
from paddlespeech.t2s.models.speedyspeech import SpeedySpeechInference
from paddlespeech.t2s.modules.normalizer import ZScore
def evaluate(args, speedyspeech_config, pwg_config):
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
# construct dataset for evaluation
sentences = []
with open(args.text, 'rt') as f:
for line in f:
utt_id, sentence = line.strip().split()
sentences.append((utt_id, sentence))
with open(args.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
with open(args.tones_dict, "r") as f:
tone_id = [line.strip().split() for line in f.readlines()]
tone_size = len(tone_id)
print("tone_size:", tone_size)
model = SpeedySpeech(
vocab_size=vocab_size,
tone_size=tone_size,
**speedyspeech_config["model"])
model.set_state_dict(
paddle.load(args.speedyspeech_checkpoint)["main_params"])
model.eval()
vocoder = PWGGenerator(**pwg_config["generator_params"])
vocoder.set_state_dict(paddle.load(args.pwg_checkpoint)["generator_params"])
vocoder.remove_weight_norm()
vocoder.eval()
print("model done!")
stat = np.load(args.speedyspeech_stat)
mu, std = stat
mu = paddle.to_tensor(mu)
std = paddle.to_tensor(std)
speedyspeech_normalizer = ZScore(mu, std)
stat = np.load(args.pwg_stat)
mu, std = stat
mu = paddle.to_tensor(mu)
std = paddle.to_tensor(std)
pwg_normalizer = ZScore(mu, std)
speedyspeech_inference = SpeedySpeechInference(speedyspeech_normalizer,
model)
speedyspeech_inference.eval()
speedyspeech_inference = jit.to_static(
speedyspeech_inference,
input_spec=[
InputSpec([-1], dtype=paddle.int64), InputSpec(
[-1], dtype=paddle.int64)
])
paddle.jit.save(speedyspeech_inference,
os.path.join(args.inference_dir, "speedyspeech"))
speedyspeech_inference = paddle.jit.load(
os.path.join(args.inference_dir, "speedyspeech"))
pwg_inference = PWGInference(pwg_normalizer, vocoder)
pwg_inference.eval()
pwg_inference = jit.to_static(
pwg_inference, input_spec=[
InputSpec([-1, 80], dtype=paddle.float32),
])
paddle.jit.save(pwg_inference, os.path.join(args.inference_dir, "pwg"))
pwg_inference = paddle.jit.load(os.path.join(args.inference_dir, "pwg"))
frontend = Frontend(
phone_vocab_path=args.phones_dict, tone_vocab_path=args.tones_dict)
print("frontend done!")
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
for utt_id, sentence in sentences:
input_ids = frontend.get_input_ids(
sentence, merge_sentences=True, get_tone_ids=True)
phone_ids = input_ids["phone_ids"]
tone_ids = input_ids["tone_ids"]
flags = 0
for i in range(len(phone_ids)):
part_phone_ids = phone_ids[i]
part_tone_ids = tone_ids[i]
with paddle.no_grad():
mel = speedyspeech_inference(part_phone_ids, part_tone_ids)
temp_wav = pwg_inference(mel)
if flags == 0:
wav = temp_wav
flags = 1
else:
wav = paddle.concat([wav, temp_wav])
sf.write(
output_dir / (utt_id + ".wav"),
wav.numpy(),
samplerate=speedyspeech_config.fs)
print(f"{utt_id} done!")
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(
description="Synthesize with speedyspeech & parallel wavegan.")
parser.add_argument(
"--speedyspeech-config", type=str, help="config file for speedyspeech.")
parser.add_argument(
"--speedyspeech-checkpoint",
type=str,
help="speedyspeech checkpoint to load.")
parser.add_argument(
"--speedyspeech-stat",
type=str,
help="mean and standard deviation used to normalize spectrogram when training speedyspeech."
)
parser.add_argument(
"--pwg-config", type=str, help="config file for parallelwavegan.")
parser.add_argument(
"--pwg-checkpoint",
type=str,
help="parallel wavegan checkpoint to load.")
parser.add_argument(
"--pwg-stat",
type=str,
help="mean and standard deviation used to normalize spectrogram when training speedyspeech."
)
parser.add_argument(
"--text",
type=str,
help="text to synthesize, a 'utt_id sentence' pair per line")
parser.add_argument(
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
parser.add_argument(
"--tones-dict", type=str, default=None, help="tone vocabulary file.")
parser.add_argument("--output-dir", type=str, help="output dir")
parser.add_argument(
"--inference-dir", type=str, help="dir to save inference models")
parser.add_argument(
"--device", type=str, default="gpu", help="device type to use")
parser.add_argument("--verbose", type=int, default=1, help="verbose")
args, _ = parser.parse_known_args()
paddle.set_device(args.device)
with open(args.speedyspeech_config) as f:
speedyspeech_config = CfgNode(yaml.safe_load(f))
with open(args.pwg_config) as f:
pwg_config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(speedyspeech_config)
print(pwg_config)
evaluate(args, speedyspeech_config, pwg_config)
if __name__ == "__main__":
main()