PaddleSpeech/tests/benchmark/pwgan/run_all.sh

58 lines
3.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#!/usr/bin/env bash
log_path=${LOG_PATH_INDEX_DIR:-$(pwd)} # benchmark系统指定该参数,不需要跑profile时,log_path指向存speed的目录
stage=0
stop_stage=100
sed -i '/set\ -xe/d' run_benchmark.sh
# 提供可稳定复现性能的脚本默认在标准docker环境内py37执行 paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37
# 执行目录:需说明
cd ../../../
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
sudo apt-get install libsndfile1
pip install -e .
pushd examples/csmsc/voc1
source path.sh
popd
fi
# 2 拷贝该模型需要数据、预训练模型
# 下载 baker 数据集到 home 目录下并解压缩到 home 目录下
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
wget https://weixinxcxdb.oss-cn-beijing.aliyuncs.com/gwYinPinKu/BZNSYP.rar
mkdir BZNSYP
unrar x BZNSYP.rar BZNSYP
wget https://paddlespeech.bj.bcebos.com/Parakeet/benchmark/durations.txt
fi
# 数据预处理
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
python paddlespeech/t2s/exps/gan_vocoder/preprocess.py --rootdir=BZNSYP/ --dumpdir=dump --num-cpu=20 --cut-sil=True --dur-file=durations.txt --config=examples/csmsc/voc1/conf/default.yaml
python utils/compute_statistics.py --metadata=dump/train/raw/metadata.jsonl --field-name="feats"
python paddlespeech/t2s/exps/gan_vocoder/normalize.py --metadata=dump/train/raw/metadata.jsonl --dumpdir=dump/train/norm --stats=dump/train/feats_stats.npy
python paddlespeech/t2s/exps/gan_vocoder/normalize.py --metadata=dump/dev/raw/metadata.jsonl --dumpdir=dump/dev/norm --stats=dump/train/feats_stats.npy
python paddlespeech/t2s/exps/gan_vocoder/normalize.py --metadata=dump/test/raw/metadata.jsonl --dumpdir=dump/test/norm --stats=dump/train/feats_stats.npy
fi
# 3 批量运行如不方便批量12需放到单个模型中
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
model_mode_list=(pwgan)
fp_item_list=(fp32)
# 满 bs 是 26
bs_item_list=(6 26)
for model_mode in ${model_mode_list[@]}; do
for fp_item in ${fp_item_list[@]}; do
for bs_item in ${bs_item_list[@]}; do
log_name=speech_${model_mode}_bs${bs_item}_${fp_item} # 如:clas_MobileNetv1_mp_bs32_fp32_8
echo "index is speed, 1gpus, begin, ${log_name}"
run_mode=sp
CUDA_VISIBLE_DEVICES=0 bash tests/benchmark/pwgan/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 100 ${model_mode} | tee ${log_path}/${log_name}_speed_1gpus 2>&1 # (5min)
sleep 60
log_name=speech_${model_mode}_bs${bs_item}_${fp_item} # 如:clas_MobileNetv1_mp_bs32_fp32_8
echo "index is speed, 8gpus, run_mode is multi_process, begin, ${log_name}"
run_mode=mp
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash tests/benchmark/pwgan/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 100 ${model_mode} | tee ${log_path}/${log_name}_speed_8gpus8p 2>&1 #
sleep 60
done
done
done
fi