You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/exps/deepspeech2/bin/deploy/runtime.py

188 lines
6.3 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Server-end for the ASR demo."""
import functools
import numpy as np
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
from deepspeech.io.dataset import ManifestDataset
from deepspeech.models.deepspeech2 import DeepSpeech2Model
from deepspeech.training.cli import default_argument_parser
from deepspeech.utils.socket_server import AsrRequestHandler
from deepspeech.utils.socket_server import AsrTCPServer
from deepspeech.utils.socket_server import warm_up_test
from deepspeech.utils.utility import add_arguments
from deepspeech.utils.utility import print_arguments
def init_predictor(args):
if args.model_dir is not None:
config = Config(args.model_dir)
else:
config = Config(args.model_file, args.params_file)
config.enable_memory_optim()
if args.use_gpu:
config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
else:
# If not specific mkldnn, you can set the blas thread.
# The thread num should not be greater than the number of cores in the CPU.
config.set_cpu_math_library_num_threads(4)
config.enable_mkldnn()
predictor = create_predictor(config)
return predictor
def run(predictor, img):
# copy img data to input tensor
input_names = predictor.get_input_names()
for i, name in enumerate(input_names):
input_tensor = predictor.get_input_handle(name)
#input_tensor.reshape(img[i].shape)
#input_tensor.copy_from_cpu(img[i].copy())
# do the inference
predictor.run()
results = []
# get out data from output tensor
output_names = predictor.get_output_names()
for i, name in enumerate(output_names):
output_tensor = predictor.get_output_handle(name)
output_data = output_tensor.copy_to_cpu()
results.append(output_data)
return results
def inference(config, args):
predictor = init_predictor(args)
def start_server(config, args):
"""Start the ASR server"""
config.defrost()
config.data.manfiest = config.data.test_manifest
config.data.augmentation_config = ""
config.data.keep_transcription_text = True
dataset = ManifestDataset.from_config(config)
model = DeepSpeech2Model.from_pretrained(dataset, config,
args.checkpoint_path)
model.eval()
# prepare ASR inference handler
def file_to_transcript(filename):
feature = dataset.process_utterance(filename, "")
audio = np.array([feature[0]]).astype('float32') #[1, D, T]
audio_len = feature[0].shape[1]
audio_len = np.array([audio_len]).astype('int64') # [1]
result_transcript = model.decode(
paddle.to_tensor(audio),
paddle.to_tensor(audio_len),
vocab_list=dataset.vocab_list,
decoding_method=config.decoding.decoding_method,
lang_model_path=config.decoding.lang_model_path,
beam_alpha=config.decoding.alpha,
beam_beta=config.decoding.beta,
beam_size=config.decoding.beam_size,
cutoff_prob=config.decoding.cutoff_prob,
cutoff_top_n=config.decoding.cutoff_top_n,
num_processes=config.decoding.num_proc_bsearch)
return result_transcript[0]
# warming up with utterrances sampled from Librispeech
print('-----------------------------------------------------------')
print('Warming up ...')
warm_up_test(
audio_process_handler=file_to_transcript,
manifest_path=args.warmup_manifest,
num_test_cases=3)
print('-----------------------------------------------------------')
# start the server
server = AsrTCPServer(
server_address=(args.host_ip, args.host_port),
RequestHandlerClass=AsrRequestHandler,
speech_save_dir=args.speech_save_dir,
audio_process_handler=file_to_transcript)
print("ASR Server Started.")
server.serve_forever()
def main(config, args):
start_server(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('host_ip', str,
'localhost',
"Server's IP address.")
add_arg('host_port', int, 8086, "Server's IP port.")
add_arg('speech_save_dir', str,
'demo_cache',
"Directory to save demo audios.")
add_arg('warmup_manifest', str, None, "Filepath of manifest to warm up.")
add_arg(
"--model_file",
type=str,
default="",
help="Model filename, Specify this when your model is a combined model."
)
add_arg(
"--params_file",
type=str,
default="",
help="Parameter filename, Specify this when your model is a combined model."
)
add_arg(
"--model_dir",
type=str,
default=None,
help="Model dir, If you load a non-combined model, specify the directory of the model."
)
add_arg("--use_gpu",
type=bool,
default=False,
help="Whether use gpu.")
args = parser.parse_args()
print_arguments(args, globals())
# https://yaml.org/type/float.html
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
args.warmup_manifest = config.data.test_manifest
print_arguments(args, globals())
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
main(config, args)