You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
6.3 KiB
188 lines
6.3 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Server-end for the ASR demo."""
|
|
import functools
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddle.inference import Config
|
|
from paddle.inference import create_predictor
|
|
|
|
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
|
|
from deepspeech.io.dataset import ManifestDataset
|
|
from deepspeech.models.deepspeech2 import DeepSpeech2Model
|
|
from deepspeech.training.cli import default_argument_parser
|
|
from deepspeech.utils.socket_server import AsrRequestHandler
|
|
from deepspeech.utils.socket_server import AsrTCPServer
|
|
from deepspeech.utils.socket_server import warm_up_test
|
|
from deepspeech.utils.utility import add_arguments
|
|
from deepspeech.utils.utility import print_arguments
|
|
|
|
|
|
def init_predictor(args):
|
|
if args.model_dir is not None:
|
|
config = Config(args.model_dir)
|
|
else:
|
|
config = Config(args.model_file, args.params_file)
|
|
|
|
config.enable_memory_optim()
|
|
if args.use_gpu:
|
|
config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
|
|
else:
|
|
# If not specific mkldnn, you can set the blas thread.
|
|
# The thread num should not be greater than the number of cores in the CPU.
|
|
config.set_cpu_math_library_num_threads(4)
|
|
config.enable_mkldnn()
|
|
|
|
predictor = create_predictor(config)
|
|
return predictor
|
|
|
|
|
|
def run(predictor, img):
|
|
# copy img data to input tensor
|
|
input_names = predictor.get_input_names()
|
|
for i, name in enumerate(input_names):
|
|
input_tensor = predictor.get_input_handle(name)
|
|
#input_tensor.reshape(img[i].shape)
|
|
#input_tensor.copy_from_cpu(img[i].copy())
|
|
|
|
# do the inference
|
|
predictor.run()
|
|
|
|
results = []
|
|
# get out data from output tensor
|
|
output_names = predictor.get_output_names()
|
|
for i, name in enumerate(output_names):
|
|
output_tensor = predictor.get_output_handle(name)
|
|
output_data = output_tensor.copy_to_cpu()
|
|
results.append(output_data)
|
|
|
|
return results
|
|
|
|
|
|
def inference(config, args):
|
|
predictor = init_predictor(args)
|
|
|
|
|
|
def start_server(config, args):
|
|
"""Start the ASR server"""
|
|
config.defrost()
|
|
config.data.manfiest = config.data.test_manifest
|
|
config.data.augmentation_config = ""
|
|
config.data.keep_transcription_text = True
|
|
dataset = ManifestDataset.from_config(config)
|
|
|
|
model = DeepSpeech2Model.from_pretrained(dataset, config,
|
|
args.checkpoint_path)
|
|
model.eval()
|
|
|
|
# prepare ASR inference handler
|
|
def file_to_transcript(filename):
|
|
feature = dataset.process_utterance(filename, "")
|
|
audio = np.array([feature[0]]).astype('float32') #[1, D, T]
|
|
audio_len = feature[0].shape[1]
|
|
audio_len = np.array([audio_len]).astype('int64') # [1]
|
|
|
|
result_transcript = model.decode(
|
|
paddle.to_tensor(audio),
|
|
paddle.to_tensor(audio_len),
|
|
vocab_list=dataset.vocab_list,
|
|
decoding_method=config.decoding.decoding_method,
|
|
lang_model_path=config.decoding.lang_model_path,
|
|
beam_alpha=config.decoding.alpha,
|
|
beam_beta=config.decoding.beta,
|
|
beam_size=config.decoding.beam_size,
|
|
cutoff_prob=config.decoding.cutoff_prob,
|
|
cutoff_top_n=config.decoding.cutoff_top_n,
|
|
num_processes=config.decoding.num_proc_bsearch)
|
|
return result_transcript[0]
|
|
|
|
# warming up with utterrances sampled from Librispeech
|
|
print('-----------------------------------------------------------')
|
|
print('Warming up ...')
|
|
warm_up_test(
|
|
audio_process_handler=file_to_transcript,
|
|
manifest_path=args.warmup_manifest,
|
|
num_test_cases=3)
|
|
print('-----------------------------------------------------------')
|
|
|
|
# start the server
|
|
server = AsrTCPServer(
|
|
server_address=(args.host_ip, args.host_port),
|
|
RequestHandlerClass=AsrRequestHandler,
|
|
speech_save_dir=args.speech_save_dir,
|
|
audio_process_handler=file_to_transcript)
|
|
print("ASR Server Started.")
|
|
server.serve_forever()
|
|
|
|
|
|
def main(config, args):
|
|
start_server(config, args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = default_argument_parser()
|
|
add_arg = functools.partial(add_arguments, argparser=parser)
|
|
# yapf: disable
|
|
add_arg('host_ip', str,
|
|
'localhost',
|
|
"Server's IP address.")
|
|
add_arg('host_port', int, 8086, "Server's IP port.")
|
|
add_arg('speech_save_dir', str,
|
|
'demo_cache',
|
|
"Directory to save demo audios.")
|
|
add_arg('warmup_manifest', str, None, "Filepath of manifest to warm up.")
|
|
add_arg(
|
|
"--model_file",
|
|
type=str,
|
|
default="",
|
|
help="Model filename, Specify this when your model is a combined model."
|
|
)
|
|
add_arg(
|
|
"--params_file",
|
|
type=str,
|
|
default="",
|
|
help="Parameter filename, Specify this when your model is a combined model."
|
|
)
|
|
add_arg(
|
|
"--model_dir",
|
|
type=str,
|
|
default=None,
|
|
help="Model dir, If you load a non-combined model, specify the directory of the model."
|
|
)
|
|
add_arg("--use_gpu",
|
|
type=bool,
|
|
default=False,
|
|
help="Whether use gpu.")
|
|
args = parser.parse_args()
|
|
print_arguments(args, globals())
|
|
|
|
# https://yaml.org/type/float.html
|
|
config = get_cfg_defaults()
|
|
if args.config:
|
|
config.merge_from_file(args.config)
|
|
if args.opts:
|
|
config.merge_from_list(args.opts)
|
|
config.freeze()
|
|
print(config)
|
|
|
|
args.warmup_manifest = config.data.test_manifest
|
|
print_arguments(args, globals())
|
|
|
|
if args.dump_config:
|
|
with open(args.dump_config, 'w') as f:
|
|
print(config, file=f)
|
|
|
|
main(config, args)
|