You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.3 KiB
186 lines
6.3 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from collections import OrderedDict
|
|
|
|
import paddle
|
|
|
|
from paddlespeech.cli.log import logger
|
|
from paddlespeech.cli.text.infer import TextExecutor
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
|
|
|
|
class PaddleTextConnectionHandler:
|
|
def __init__(self, text_engine):
|
|
"""The PaddleSpeech Text Server Connection Handler
|
|
This connection process every server request
|
|
Args:
|
|
text_engine (TextEngine): The Text engine
|
|
"""
|
|
super().__init__()
|
|
logger.debug(
|
|
"Create PaddleTextConnectionHandler to process the text request")
|
|
self.text_engine = text_engine
|
|
self.task = self.text_engine.executor.task
|
|
self.model = self.text_engine.executor.model
|
|
self.tokenizer = self.text_engine.executor.tokenizer
|
|
self._punc_list = self.text_engine.executor._punc_list
|
|
self._inputs = OrderedDict()
|
|
self._outputs = OrderedDict()
|
|
|
|
@paddle.no_grad()
|
|
def run(self, text):
|
|
"""The connection process the request text
|
|
|
|
Args:
|
|
text (str): the request text
|
|
|
|
Returns:
|
|
str: the punctuation text
|
|
"""
|
|
self.preprocess(text)
|
|
self.infer()
|
|
res = self.postprocess()
|
|
|
|
return res
|
|
|
|
@paddle.no_grad()
|
|
def preprocess(self, text):
|
|
"""
|
|
Input preprocess and return paddle.Tensor stored in self.input.
|
|
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
|
|
|
|
Args:
|
|
text (str): the request text
|
|
"""
|
|
if self.task == 'punc':
|
|
clean_text = self.text_engine.executor._clean_text(text)
|
|
assert len(clean_text) > 0, f'Invalid input string: {text}'
|
|
|
|
tokenized_input = self.tokenizer(
|
|
list(clean_text), return_length=True, is_split_into_words=True)
|
|
|
|
self._inputs['input_ids'] = tokenized_input['input_ids']
|
|
self._inputs['seg_ids'] = tokenized_input['token_type_ids']
|
|
self._inputs['seq_len'] = tokenized_input['seq_len']
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
@paddle.no_grad()
|
|
def infer(self):
|
|
"""Model inference and result stored in self.output.
|
|
"""
|
|
if self.task == 'punc':
|
|
input_ids = paddle.to_tensor(self._inputs['input_ids']).unsqueeze(0)
|
|
seg_ids = paddle.to_tensor(self._inputs['seg_ids']).unsqueeze(0)
|
|
logits, _ = self.model(input_ids, seg_ids)
|
|
preds = paddle.argmax(logits, axis=-1).squeeze(0)
|
|
|
|
self._outputs['preds'] = preds
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def postprocess(self):
|
|
"""Output postprocess and return human-readable results such as texts and audio files.
|
|
|
|
Returns:
|
|
str: The punctuation text
|
|
"""
|
|
if self.task == 'punc':
|
|
input_ids = self._inputs['input_ids']
|
|
seq_len = self._inputs['seq_len']
|
|
preds = self._outputs['preds']
|
|
|
|
tokens = self.tokenizer.convert_ids_to_tokens(
|
|
input_ids[1:seq_len - 1])
|
|
labels = preds[1:seq_len - 1].tolist()
|
|
assert len(tokens) == len(labels)
|
|
|
|
text = ''
|
|
is_fast_model = 'fast' in self.text_engine.config.model_type
|
|
for t, l in zip(tokens, labels):
|
|
text += t
|
|
if l != 0: # Non punc.
|
|
if is_fast_model:
|
|
text += self._punc_list[l - 1]
|
|
else:
|
|
text += self._punc_list[l]
|
|
return text
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
|
|
class TextServerExecutor(TextExecutor):
|
|
def __init__(self):
|
|
"""The wrapper for TextEcutor
|
|
"""
|
|
super().__init__()
|
|
pass
|
|
|
|
|
|
class TextEngine(BaseEngine):
|
|
def __init__(self):
|
|
"""The Text Engine
|
|
"""
|
|
super(TextEngine, self).__init__()
|
|
logger.debug("Create the TextEngine Instance")
|
|
|
|
def init(self, config: dict):
|
|
"""Init the Text Engine
|
|
|
|
Args:
|
|
config (dict): The server configuation
|
|
|
|
Returns:
|
|
bool: The engine instance flag
|
|
"""
|
|
logger.debug("Init the text engine")
|
|
try:
|
|
self.config = config
|
|
if self.config.device:
|
|
self.device = self.config.device
|
|
else:
|
|
self.device = paddle.get_device()
|
|
|
|
paddle.set_device(self.device)
|
|
logger.debug(f"Text Engine set the device: {self.device}")
|
|
except BaseException as e:
|
|
logger.error(
|
|
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
|
|
)
|
|
logger.error("Initialize Text server engine Failed on device: %s." %
|
|
(self.device))
|
|
return False
|
|
|
|
self.executor = TextServerExecutor()
|
|
if 'fast' in config.model_type:
|
|
self.executor._init_from_path_new(
|
|
task=config.task,
|
|
model_type=config.model_type,
|
|
lang=config.lang,
|
|
cfg_path=config.cfg_path,
|
|
ckpt_path=config.ckpt_path,
|
|
vocab_file=config.vocab_file)
|
|
else:
|
|
self.executor._init_from_path(
|
|
task=config.task,
|
|
model_type=config.model_type,
|
|
lang=config.lang,
|
|
cfg_path=config.cfg_path,
|
|
ckpt_path=config.ckpt_path,
|
|
vocab_file=config.vocab_file)
|
|
logger.info("Using model: %s." % (config.model_type))
|
|
logger.info("Initialize Text server engine successfully on device: %s."
|
|
% (self.device))
|
|
return True
|