You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/frontend/g2pw/onnx_api.py

221 lines
8.4 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Credits
This code is modified from https://github.com/GitYCC/g2pW
"""
import json
import os
import numpy as np
import onnxruntime
from opencc import OpenCC
from paddlenlp.transformers import BertTokenizer
from pypinyin import pinyin
from pypinyin import Style
from paddlespeech.cli.utils import download_and_decompress
from paddlespeech.resource.pretrained_models import g2pw_onnx_models
from paddlespeech.t2s.frontend.g2pw.dataset import get_char_phoneme_labels
from paddlespeech.t2s.frontend.g2pw.dataset import get_phoneme_labels
from paddlespeech.t2s.frontend.g2pw.dataset import prepare_onnx_input
from paddlespeech.t2s.frontend.g2pw.utils import load_config
from paddlespeech.t2s.frontend.zh_normalization.char_convert import tranditional_to_simplified
from paddlespeech.utils.env import MODEL_HOME
model_version = '1.1'
def predict(session, onnx_input, labels):
all_preds = []
all_confidences = []
probs = session.run([], {
"input_ids": onnx_input['input_ids'],
"token_type_ids": onnx_input['token_type_ids'],
"attention_mask": onnx_input['attention_masks'],
"phoneme_mask": onnx_input['phoneme_masks'],
"char_ids": onnx_input['char_ids'],
"position_ids": onnx_input['position_ids']
})[0]
preds = np.argmax(probs, axis=1).tolist()
max_probs = []
for index, arr in zip(preds, probs.tolist()):
max_probs.append(arr[index])
all_preds += [labels[pred] for pred in preds]
all_confidences += max_probs
return all_preds, all_confidences
class G2PWOnnxConverter:
def __init__(self,
model_dir=MODEL_HOME,
style='bopomofo',
model_source=None,
enable_non_tradional_chinese=False):
uncompress_path = download_and_decompress(
g2pw_onnx_models['G2PWModel'][model_version], model_dir)
sess_options = onnxruntime.SessionOptions()
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
sess_options.intra_op_num_threads = 2
self.session_g2pW = onnxruntime.InferenceSession(
os.path.join(uncompress_path, 'g2pW.onnx'),
sess_options=sess_options)
self.config = load_config(
os.path.join(uncompress_path, 'config.py'), use_default=True)
self.model_source = model_source if model_source else self.config.model_source
self.enable_opencc = enable_non_tradional_chinese
self.tokenizer = BertTokenizer.from_pretrained(self.config.model_source)
polyphonic_chars_path = os.path.join(uncompress_path,
'POLYPHONIC_CHARS.txt')
monophonic_chars_path = os.path.join(uncompress_path,
'MONOPHONIC_CHARS.txt')
self.polyphonic_chars = [
line.split('\t')
for line in open(polyphonic_chars_path, encoding='utf-8').read()
.strip().split('\n')
]
self.non_polyphonic = {
'', '', '', '', '', '', '', '', '', '', '', '', '',
'', '', '', ''
}
self.non_monophonic = {'', ''}
self.monophonic_chars = [
line.split('\t')
for line in open(monophonic_chars_path, encoding='utf-8').read()
.strip().split('\n')
]
self.labels, self.char2phonemes = get_char_phoneme_labels(
self.polyphonic_chars
) if self.config.use_char_phoneme else get_phoneme_labels(
self.polyphonic_chars)
self.chars = sorted(list(self.char2phonemes.keys()))
self.polyphonic_chars_new = set(self.chars)
for char in self.non_polyphonic:
if char in self.polyphonic_chars_new:
self.polyphonic_chars_new.remove(char)
self.monophonic_chars_dict = {
char: phoneme
for char, phoneme in self.monophonic_chars
}
for char in self.non_monophonic:
if char in self.monophonic_chars_dict:
self.monophonic_chars_dict.pop(char)
self.pos_tags = [
'UNK', 'A', 'C', 'D', 'I', 'N', 'P', 'T', 'V', 'DE', 'SHI'
]
with open(
os.path.join(uncompress_path,
'bopomofo_to_pinyin_wo_tune_dict.json'),
'r',
encoding='utf-8') as fr:
self.bopomofo_convert_dict = json.load(fr)
self.style_convert_func = {
'bopomofo': lambda x: x,
'pinyin': self._convert_bopomofo_to_pinyin,
}[style]
with open(
os.path.join(uncompress_path, 'char_bopomofo_dict.json'),
'r',
encoding='utf-8') as fr:
self.char_bopomofo_dict = json.load(fr)
if self.enable_opencc:
self.cc = OpenCC('s2tw')
def _convert_bopomofo_to_pinyin(self, bopomofo):
tone = bopomofo[-1]
assert tone in '12345'
component = self.bopomofo_convert_dict.get(bopomofo[:-1])
if component:
return component + tone
else:
print(f'Warning: "{bopomofo}" cannot convert to pinyin')
return None
def __call__(self, sentences):
if isinstance(sentences, str):
sentences = [sentences]
if self.enable_opencc:
translated_sentences = []
for sent in sentences:
translated_sent = self.cc.convert(sent)
assert len(translated_sent) == len(sent)
translated_sentences.append(translated_sent)
sentences = translated_sentences
texts, query_ids, sent_ids, partial_results = self._prepare_data(
sentences)
if len(texts) == 0:
# sentences no polyphonic words
return partial_results
onnx_input = prepare_onnx_input(
self.tokenizer,
self.labels,
self.char2phonemes,
self.chars,
texts,
query_ids,
use_mask=self.config.use_mask,
use_char_phoneme=self.config.use_char_phoneme,
window_size=None)
preds, confidences = predict(self.session_g2pW, onnx_input, self.labels)
if self.config.use_char_phoneme:
preds = [pred.split(' ')[1] for pred in preds]
results = partial_results
for sent_id, query_id, pred in zip(sent_ids, query_ids, preds):
results[sent_id][query_id] = self.style_convert_func(pred)
return results
def _prepare_data(self, sentences):
texts, query_ids, sent_ids, partial_results = [], [], [], []
for sent_id, sent in enumerate(sentences):
# pypinyin works well for Simplified Chinese than Traditional Chinese
sent_s = tranditional_to_simplified(sent)
pypinyin_result = pinyin(sent_s, style=Style.TONE3)
partial_result = [None] * len(sent)
for i, char in enumerate(sent):
if char in self.polyphonic_chars_new:
texts.append(sent)
query_ids.append(i)
sent_ids.append(sent_id)
elif char in self.monophonic_chars_dict:
partial_result[i] = self.style_convert_func(
self.monophonic_chars_dict[char])
elif char in self.char_bopomofo_dict:
partial_result[i] = pypinyin_result[i][0]
# partial_result[i] = self.style_convert_func(self.char_bopomofo_dict[char][0])
else:
partial_result[i] = pypinyin_result[i][0]
partial_results.append(partial_result)
return texts, query_ids, sent_ids, partial_results