You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/exps/lm/transformer/lm_cacu_perplexity.py

133 lines
4.3 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Caculating the PPL of LM model
import os
import numpy as np
import paddle
from paddle.io import DataLoader
from yacs.config import CfgNode
from paddlespeech.s2t.models.lm.dataset import TextCollatorSpm
from paddlespeech.s2t.models.lm.dataset import TextDataset
from paddlespeech.s2t.models.lm_interface import dynamic_import_lm
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
def get_config(config_path):
confs = CfgNode(new_allowed=True)
confs.merge_from_file(config_path)
return confs
def load_trained_lm(args):
lm_config = get_config(args.rnnlm_conf)
lm_model_module = lm_config.model_module
lm_class = dynamic_import_lm(lm_model_module)
lm = lm_class(**lm_config.model)
model_dict = paddle.load(args.rnnlm)
lm.set_state_dict(model_dict)
return lm, lm_config
def write_dict_into_file(ppl_dict, name):
with open(name, "w") as f:
for key in ppl_dict.keys():
f.write(key + " " + ppl_dict[key] + "\n")
return
def cacu_perplexity(
lm_model,
lm_config,
args,
log_base=None, ):
unit_type = lm_config.data.unit_type
batch_size = lm_config.decoding.batch_size
num_workers = lm_config.decoding.num_workers
text_file_path = args.text_path
total_nll = 0.0
total_ntokens = 0
ppl_dict = {}
len_dict = {}
text_dataset = TextDataset.from_file(text_file_path)
collate_fn_text = TextCollatorSpm(
unit_type=unit_type,
vocab_filepath=args.vocab_path,
spm_model_prefix=args.bpeprefix)
train_loader = DataLoader(
text_dataset,
batch_size=batch_size,
collate_fn=collate_fn_text,
num_workers=num_workers)
logger.info("start caculating PPL......")
for i, (keys, ys_input_pad, ys_output_pad,
y_lens) in enumerate(train_loader()):
ys_input_pad = paddle.to_tensor(ys_input_pad)
ys_output_pad = paddle.to_tensor(ys_output_pad)
_, unused_logp, unused_count, nll, nll_count = lm_model.forward(
ys_input_pad, ys_output_pad)
nll = nll.numpy()
nll_count = nll_count.numpy()
for key, _nll, ntoken in zip(keys, nll, nll_count):
if log_base is None:
utt_ppl = np.exp(_nll / ntoken)
else:
utt_ppl = log_base**(_nll / ntoken / np.log(log_base))
# Write PPL of each utts for debugging or analysis
ppl_dict[key] = str(utt_ppl)
len_dict[key] = str(ntoken)
total_nll += nll.sum()
total_ntokens += nll_count.sum()
logger.info("Current total nll: " + str(total_nll))
logger.info("Current total tokens: " + str(total_ntokens))
write_dict_into_file(ppl_dict, os.path.join(args.output_dir, "uttPPL"))
write_dict_into_file(len_dict, os.path.join(args.output_dir, "uttLEN"))
if log_base is None:
ppl = np.exp(total_nll / total_ntokens)
else:
ppl = log_base**(total_nll / total_ntokens / np.log(log_base))
if log_base is None:
log_base = np.e
else:
log_base = log_base
return ppl, log_base
def run_get_perplexity(args):
if args.ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
if args.ngpu == 1:
device = "gpu:0"
else:
device = "cpu"
paddle.set_device(device)
dtype = getattr(paddle, args.dtype)
logger.info(f"Decoding device={device}, dtype={dtype}")
lm_model, lm_config = load_trained_lm(args)
lm_model.to(device=device, dtype=dtype)
lm_model.eval()
PPL, log_base = cacu_perplexity(lm_model, lm_config, args, None)
logger.info("Final PPL: " + str(PPL))
logger.info("The log base is:" + str("%.2f" % log_base))