You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
372 lines
15 KiB
372 lines
15 KiB
#!/bin/bash
|
|
# usage: bash test.sh ***.txt MODE
|
|
|
|
FILENAME=$1
|
|
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
|
|
MODE=$2
|
|
|
|
dataline=$(cat ${FILENAME})
|
|
|
|
# parser params
|
|
IFS=$'\n'
|
|
lines=(${dataline})
|
|
|
|
function func_parser_key(){
|
|
strs=$1
|
|
IFS=":"
|
|
array=(${strs})
|
|
tmp=${array[0]}
|
|
echo ${tmp}
|
|
}
|
|
function func_parser_value(){
|
|
strs=$1
|
|
IFS=":"
|
|
array=(${strs})
|
|
tmp=${array[1]}
|
|
echo ${tmp}
|
|
}
|
|
function func_set_params(){
|
|
key=$1
|
|
value=$2
|
|
if [ ${key} = "null" ];then
|
|
echo " "
|
|
elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
|
|
echo " "
|
|
else
|
|
echo "${key}=${value}"
|
|
fi
|
|
}
|
|
function func_parser_params(){
|
|
strs=$1
|
|
IFS=":"
|
|
array=(${strs})
|
|
key=${array[0]}
|
|
tmp=${array[1]}
|
|
IFS="|"
|
|
res=""
|
|
for _params in ${tmp[*]}; do
|
|
IFS="="
|
|
array=(${_params})
|
|
mode=${array[0]}
|
|
value=${array[1]}
|
|
if [[ ${mode} = ${MODE} ]]; then
|
|
IFS="|"
|
|
#echo $(func_set_params "${mode}" "${value}")
|
|
echo $value
|
|
break
|
|
fi
|
|
IFS="|"
|
|
done
|
|
echo ${res}
|
|
}
|
|
function status_check(){
|
|
last_status=$1 # the exit code
|
|
run_command=$2
|
|
run_log=$3
|
|
if [ $last_status -eq 0 ]; then
|
|
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
|
else
|
|
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
|
fi
|
|
}
|
|
|
|
IFS=$'\n'
|
|
# The training params
|
|
model_name=$(func_parser_value "${lines[1]}")
|
|
python=$(func_parser_value "${lines[2]}")
|
|
gpu_list=$(func_parser_value "${lines[3]}")
|
|
train_use_gpu_key=$(func_parser_key "${lines[4]}")
|
|
train_use_gpu_value=$(func_parser_value "${lines[4]}")
|
|
autocast_list=$(func_parser_value "${lines[5]}")
|
|
autocast_key=$(func_parser_key "${lines[5]}")
|
|
epoch_key=$(func_parser_key "${lines[6]}")
|
|
epoch_num=$(func_parser_params "${lines[6]}")
|
|
save_model_key=$(func_parser_key "${lines[7]}")
|
|
train_batch_key=$(func_parser_key "${lines[8]}")
|
|
train_batch_value=$(func_parser_params "${lines[8]}")
|
|
pretrain_model_key=$(func_parser_key "${lines[9]}")
|
|
pretrain_model_value=$(func_parser_value "${lines[9]}")
|
|
train_model_name=$(func_parser_value "${lines[10]}")
|
|
train_infer_img_dir=$(func_parser_value "${lines[11]}")
|
|
train_param_key1=$(func_parser_key "${lines[12]}")
|
|
train_param_value1=$(func_parser_value "${lines[12]}")
|
|
|
|
trainer_list=$(func_parser_value "${lines[14]}")
|
|
trainer_norm=$(func_parser_key "${lines[15]}")
|
|
norm_trainer=$(func_parser_value "${lines[15]}")
|
|
pact_key=$(func_parser_key "${lines[16]}")
|
|
pact_trainer=$(func_parser_value "${lines[16]}")
|
|
fpgm_key=$(func_parser_key "${lines[17]}")
|
|
fpgm_trainer=$(func_parser_value "${lines[17]}")
|
|
distill_key=$(func_parser_key "${lines[18]}")
|
|
distill_trainer=$(func_parser_value "${lines[18]}")
|
|
trainer_key1=$(func_parser_key "${lines[19]}")
|
|
trainer_value1=$(func_parser_value "${lines[19]}")
|
|
trainer_key2=$(func_parser_key "${lines[20]}")
|
|
trainer_value2=$(func_parser_value "${lines[20]}")
|
|
|
|
eval_py=$(func_parser_value "${lines[23]}")
|
|
eval_key1=$(func_parser_key "${lines[24]}")
|
|
eval_value1=$(func_parser_value "${lines[24]}")
|
|
|
|
save_infer_key=$(func_parser_key "${lines[27]}")
|
|
export_weight=$(func_parser_key "${lines[28]}")
|
|
norm_export=$(func_parser_value "${lines[29]}")
|
|
pact_export=$(func_parser_value "${lines[30]}")
|
|
fpgm_export=$(func_parser_value "${lines[31]}")
|
|
distill_export=$(func_parser_value "${lines[32]}")
|
|
export_key1=$(func_parser_key "${lines[33]}")
|
|
export_value1=$(func_parser_value "${lines[33]}")
|
|
export_key2=$(func_parser_key "${lines[34]}")
|
|
export_value2=$(func_parser_value "${lines[34]}")
|
|
|
|
# parser inference model
|
|
infer_model_dir_list=$(func_parser_value "${lines[36]}")
|
|
infer_export_list=$(func_parser_value "${lines[37]}")
|
|
infer_is_quant=$(func_parser_value "${lines[38]}")
|
|
# parser inference
|
|
inference_py=$(func_parser_value "${lines[39]}")
|
|
use_gpu_key=$(func_parser_key "${lines[40]}")
|
|
use_gpu_list=$(func_parser_value "${lines[40]}")
|
|
use_mkldnn_key=$(func_parser_key "${lines[41]}")
|
|
use_mkldnn_list=$(func_parser_value "${lines[41]}")
|
|
cpu_threads_key=$(func_parser_key "${lines[42]}")
|
|
cpu_threads_list=$(func_parser_value "${lines[42]}")
|
|
batch_size_key=$(func_parser_key "${lines[43]}")
|
|
batch_size_list=$(func_parser_value "${lines[43]}")
|
|
use_trt_key=$(func_parser_key "${lines[44]}")
|
|
use_trt_list=$(func_parser_value "${lines[44]}")
|
|
precision_key=$(func_parser_key "${lines[45]}")
|
|
precision_list=$(func_parser_value "${lines[45]}")
|
|
infer_model_key=$(func_parser_key "${lines[46]}")
|
|
image_dir_key=$(func_parser_key "${lines[47]}")
|
|
infer_img_dir=$(func_parser_value "${lines[47]}")
|
|
save_log_key=$(func_parser_key "${lines[48]}")
|
|
benchmark_key=$(func_parser_key "${lines[49]}")
|
|
benchmark_value=$(func_parser_value "${lines[49]}")
|
|
infer_key1=$(func_parser_key "${lines[50]}")
|
|
infer_value1=$(func_parser_value "${lines[50]}")
|
|
|
|
LOG_PATH="./tests/output"
|
|
mkdir -p ${LOG_PATH}
|
|
status_log="${LOG_PATH}/results.log"
|
|
|
|
|
|
function func_inference(){
|
|
IFS='|'
|
|
_python=$1
|
|
_script=$2
|
|
_model_dir=$3
|
|
_log_path=$4
|
|
_img_dir=$5
|
|
_flag_quant=$6
|
|
# inference
|
|
for use_gpu in ${use_gpu_list[*]}; do
|
|
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
|
|
for use_mkldnn in ${use_mkldnn_list[*]}; do
|
|
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
|
|
continue
|
|
fi
|
|
for threads in ${cpu_threads_list[*]}; do
|
|
for batch_size in ${batch_size_list[*]}; do
|
|
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
|
|
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
|
|
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
|
|
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
|
|
set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
|
|
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
|
|
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
|
|
command="${_python} ${_script} > ${_save_log_path} 2>&1 "
|
|
eval $command
|
|
last_status=${PIPESTATUS[0]}
|
|
eval "cat ${_save_log_path}"
|
|
status_check $last_status "${command}" "${status_log}"
|
|
done
|
|
done
|
|
done
|
|
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
|
|
for use_trt in ${use_trt_list[*]}; do
|
|
for precision in ${precision_list[*]}; do
|
|
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
|
|
continue
|
|
fi
|
|
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
|
|
continue
|
|
fi
|
|
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
|
|
continue
|
|
fi
|
|
for batch_size in ${batch_size_list[*]}; do
|
|
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
|
|
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
|
|
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
|
|
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
|
|
set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
|
|
set_precision=$(func_set_params "${precision_key}" "${precision}")
|
|
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
|
|
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
|
|
command="${_python} ${_script} > ${_save_log_path} 2>&1 "
|
|
eval $command
|
|
last_status=${PIPESTATUS[0]}
|
|
eval "cat ${_save_log_path}"
|
|
status_check $last_status "${command}" "${status_log}"
|
|
|
|
done
|
|
done
|
|
done
|
|
else
|
|
echo "Does not support hardware other than CPU and GPU Currently!"
|
|
fi
|
|
done
|
|
}
|
|
|
|
if [ ${MODE} = "infer" ]; then
|
|
GPUID=$3
|
|
if [ ${#GPUID} -le 0 ];then
|
|
env=" "
|
|
else
|
|
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
|
fi
|
|
# set CUDA_VISIBLE_DEVICES
|
|
eval $env
|
|
export Count=0
|
|
IFS="|"
|
|
infer_run_exports=(${infer_export_list})
|
|
infer_quant_flag=(${infer_is_quant})
|
|
for infer_model in ${infer_model_dir_list[*]}; do
|
|
# run export
|
|
if [ ${infer_run_exports[Count]} != "null" ];then
|
|
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
|
|
set_save_infer_key=$(func_set_params "${save_infer_key}" "${infer_model}")
|
|
export_cmd="${python} ${norm_export} ${set_export_weight} ${set_save_infer_key}"
|
|
eval $export_cmd
|
|
status_export=$?
|
|
if [ ${status_export} = 0 ];then
|
|
status_check $status_export "${export_cmd}" "${status_log}"
|
|
fi
|
|
fi
|
|
#run inference
|
|
is_quant=${infer_quant_flag[Count]}
|
|
func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
|
|
Count=$(($Count + 1))
|
|
done
|
|
|
|
else
|
|
IFS="|"
|
|
export Count=0
|
|
USE_GPU_KEY=(${train_use_gpu_value})
|
|
for gpu in ${gpu_list[*]}; do
|
|
use_gpu=${USE_GPU_KEY[Count]}
|
|
Count=$(($Count + 1))
|
|
if [ ${gpu} = "-1" ];then
|
|
env=""
|
|
elif [ ${#gpu} -le 1 ];then
|
|
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
|
eval ${env}
|
|
elif [ ${#gpu} -le 15 ];then
|
|
IFS=","
|
|
array=(${gpu})
|
|
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
|
|
IFS="|"
|
|
else
|
|
IFS=";"
|
|
array=(${gpu})
|
|
ips=${array[0]}
|
|
gpu=${array[1]}
|
|
IFS="|"
|
|
env=" "
|
|
fi
|
|
for autocast in ${autocast_list[*]}; do
|
|
for trainer in ${trainer_list[*]}; do
|
|
flag_quant=False
|
|
if [ ${trainer} = ${pact_key} ]; then
|
|
run_train=${pact_trainer}
|
|
run_export=${pact_export}
|
|
flag_quant=True
|
|
elif [ ${trainer} = "${fpgm_key}" ]; then
|
|
run_train=${fpgm_trainer}
|
|
run_export=${fpgm_export}
|
|
elif [ ${trainer} = "${distill_key}" ]; then
|
|
run_train=${distill_trainer}
|
|
run_export=${distill_export}
|
|
elif [ ${trainer} = ${trainer_key1} ]; then
|
|
run_train=${trainer_value1}
|
|
run_export=${export_value1}
|
|
elif [[ ${trainer} = ${trainer_key2} ]]; then
|
|
run_train=${trainer_value2}
|
|
run_export=${export_value2}
|
|
else
|
|
run_train=${norm_trainer}
|
|
run_export=${norm_export}
|
|
fi
|
|
|
|
if [ ${run_train} = "null" ]; then
|
|
continue
|
|
fi
|
|
|
|
set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
|
|
set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
|
|
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
|
|
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
|
|
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
|
|
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
|
|
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
|
|
|
|
# load pretrain from norm training if current trainer is pact or fpgm trainer
|
|
if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
|
|
set_pretrain="${load_norm_train_model}"
|
|
fi
|
|
|
|
set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
|
|
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
|
|
cmd="${python} ${run_train} "
|
|
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
|
|
gsu=${gpu//,/ }
|
|
nump=`echo $gsu | wc -w`
|
|
cmd="${python} ${run_train} --ngpu=$nump"
|
|
else # train with multi-machine
|
|
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
|
fi
|
|
# run train
|
|
# eval "unset CUDA_VISIBLE_DEVICES"
|
|
eval $cmd
|
|
status_check $? "${cmd}" "${status_log}"
|
|
|
|
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
|
|
# save norm trained models to set pretrain for pact training and fpgm training
|
|
if [ ${trainer} = ${trainer_norm} ]; then
|
|
load_norm_train_model=${set_eval_pretrain}
|
|
fi
|
|
# run eval
|
|
if [ ${eval_py} != "null" ]; then
|
|
IFS=","
|
|
array=(${gpu})
|
|
IFS="|"
|
|
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
|
|
eval $env
|
|
set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
|
|
eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}"
|
|
eval $eval_cmd
|
|
status_check $? "${eval_cmd}" "${status_log}"
|
|
fi
|
|
# run export model
|
|
if [ ${run_export} != "null" ]; then
|
|
# run export model
|
|
save_infer_path="${save_log}"
|
|
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
|
|
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
|
|
export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
|
|
eval $export_cmd
|
|
status_check $? "${export_cmd}" "${status_log}"
|
|
|
|
#run inference
|
|
eval $env
|
|
save_infer_path="${save_log}"
|
|
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
|
|
#eval "unset CUDA_VISIBLE_DEVICES"
|
|
fi
|
|
done # done with: for trainer in ${trainer_list[*]}; do
|
|
done # done with: for autocast in ${autocast_list[*]}; do
|
|
done # done with: for gpu in ${gpu_list[*]}; do
|
|
fi # end if [ ${MODE} = "infer" ]; then
|