You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/vector/io/dataset.py

111 lines
3.6 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from dataclasses import fields
from paddle.io import Dataset
from paddleaudio import load as load_audio
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
# the audio meta info in the vector CSVDataset
# utt_id: the utterance segment name
# duration: utterance segment time
# wav: utterance file path
# start: start point in the original wav file
# stop: stop point in the original wav file
# lab_id: the utterance segment's label id
@dataclass
class meta_info:
utt_id: str
duration: float
wav: str
start: int
stop: int
lab_id: str
class CSVDataset(Dataset):
# meta_info = collections.namedtuple(
# 'META_INFO', ('id', 'duration', 'wav', 'start', 'stop', 'spk_id'))
def __init__(self, csv_path, spk_id2label_path=None, config=None):
super().__init__()
self.csv_path = csv_path
self.spk_id2label_path = spk_id2label_path
self.config = config
self.data = self.load_data_csv()
self.spk_id2label = self.load_speaker_to_label()
def load_data_csv(self):
data = []
with open(self.csv_path, 'r') as rf:
for line in rf.readlines()[1:]:
audio_id, duration, wav, start, stop, spk_id = line.strip(
).split(',')
data.append(
meta_info(audio_id,
float(duration), wav,
int(start), int(stop), spk_id))
return data
def load_speaker_to_label(self):
if not self.spk_id2label_path:
logger.warning("No speaker id to label file")
return
spk_id2label = {}
with open(self.spk_id2label_path, 'r') as f:
for line in f.readlines():
spk_id, label = line.strip().split(' ')
spk_id2label[spk_id] = int(label)
return spk_id2label
def convert_to_record(self, idx: int):
sample = self.data[idx]
record = {}
# To show all fields in a namedtuple: `type(sample)._fields`
for field in fields(sample):
record[field.name] = getattr(sample, field.name)
waveform, sr = load_audio(record['wav'])
# random select a chunk audio samples from the audio
if self.config and self.config.random_chunk:
num_wav_samples = waveform.shape[0]
num_chunk_samples = int(self.config.chunk_duration * sr)
start = random.randint(0, num_wav_samples - num_chunk_samples - 1)
stop = start + num_chunk_samples
else:
start = record['start']
stop = record['stop']
# we only return the waveform as feat
waveform = waveform[start:stop]
record.update({'feat': waveform})
if self.spk_id2label:
record.update({'label': self.spk_id2label[record['lab_id']]})
return record
def __getitem__(self, idx):
return self.convert_to_record(idx)
def __len__(self):
return len(self.data)