You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/frontend/normalizer.py

191 lines
6.7 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains feature normalizers."""
import json
import numpy as np
import paddle
from paddle.io import DataLoader
from paddle.io import Dataset
from deepspeech.frontend.audio import AudioSegment
from deepspeech.frontend.utility import load_cmvn
from deepspeech.frontend.utility import read_manifest
from deepspeech.utils.log import Log
__all__ = ["FeatureNormalizer"]
logger = Log(__name__).getlog()
# https://github.com/PaddlePaddle/Paddle/pull/31481
class CollateFunc(object):
def __init__(self, feature_func):
self.feature_func = feature_func
def __call__(self, batch):
mean_stat = None
var_stat = None
number = 0
for item in batch:
audioseg = AudioSegment.from_file(item['feat'])
feat = self.feature_func(audioseg) #(D, T)
sums = np.sum(feat, axis=1)
if mean_stat is None:
mean_stat = sums
else:
mean_stat += sums
square_sums = np.sum(np.square(feat), axis=1)
if var_stat is None:
var_stat = square_sums
else:
var_stat += square_sums
number += feat.shape[1]
return number, mean_stat, var_stat
class AudioDataset(Dataset):
def __init__(self, manifest_path, num_samples=-1, rng=None, random_seed=0):
self._rng = rng if rng else np.random.RandomState(random_seed)
manifest = read_manifest(manifest_path)
if num_samples == -1:
sampled_manifest = manifest
else:
sampled_manifest = self._rng.choice(
manifest, num_samples, replace=False)
self.items = sampled_manifest
def __len__(self):
return len(self.items)
def __getitem__(self, idx):
return self.items[idx]
class FeatureNormalizer(object):
"""Feature normalizer. Normalize features to be of zero mean and unit
stddev.
if mean_std_filepath is provided (not None), the normalizer will directly
initilize from the file. Otherwise, both manifest_path and featurize_func
should be given for on-the-fly mean and stddev computing.
:param mean_std_filepath: File containing the pre-computed mean and stddev.
:type mean_std_filepath: None|str
:param manifest_path: Manifest of instances for computing mean and stddev.
:type meanifest_path: None|str
:param featurize_func: Function to extract features. It should be callable
with ``featurize_func(audio_segment)``.
:type featurize_func: None|callable
:param num_samples: Number of random samples for computing mean and stddev.
:type num_samples: int
:param random_seed: Random seed for sampling instances.
:type random_seed: int
:raises ValueError: If both mean_std_filepath and manifest_path
(or both mean_std_filepath and featurize_func) are None.
"""
def __init__(self,
mean_std_filepath,
manifest_path=None,
featurize_func=None,
num_samples=500,
num_workers=0,
random_seed=0):
if not mean_std_filepath:
if not (manifest_path and featurize_func):
raise ValueError("If mean_std_filepath is None, meanifest_path "
"and featurize_func should not be None.")
self._rng = np.random.RandomState(random_seed)
self._compute_mean_std(manifest_path, featurize_func, num_samples,
num_workers)
else:
self._read_mean_std_from_file(mean_std_filepath)
def apply(self, features):
"""Normalize features to be of zero mean and unit stddev.
:param features: Input features to be normalized.
:type features: ndarray, shape (D, T)
:param eps: added to stddev to provide numerical stablibity.
:type eps: float
:return: Normalized features.
:rtype: ndarray
"""
return (features - self._mean) * self._istd
def _read_mean_std_from_file(self, filepath, eps=1e-20):
"""Load mean and std from file."""
mean, istd = load_cmvn(filepath, filetype='json')
self._mean = np.expand_dims(mean, axis=-1)
self._istd = np.expand_dims(istd, axis=-1)
def write_to_file(self, filepath):
"""Write the mean and stddev to the file.
:param filepath: File to write mean and stddev.
:type filepath: str
"""
with open(filepath, 'w') as fout:
fout.write(json.dumps(self.cmvn_info))
def _compute_mean_std(self,
manifest_path,
featurize_func,
num_samples,
num_workers,
batch_size=64,
eps=1e-20):
"""Compute mean and std from randomly sampled instances."""
paddle.set_device('cpu')
collate_func = CollateFunc(featurize_func)
dataset = AudioDataset(manifest_path, num_samples, self._rng)
data_loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
collate_fn=collate_func)
with paddle.no_grad():
all_mean_stat = None
all_var_stat = None
all_number = 0
wav_number = 0
for i, batch in enumerate(data_loader):
number, mean_stat, var_stat = batch
if i == 0:
all_mean_stat = mean_stat
all_var_stat = var_stat
else:
all_mean_stat += mean_stat
all_var_stat += var_stat
all_number += number
wav_number += batch_size
if wav_number % 1000 == 0:
logger.info(f'process {wav_number} wavs,{all_number} frames.')
self.cmvn_info = {
'mean_stat': list(all_mean_stat.tolist()),
'var_stat': list(all_var_stat.tolist()),
'frame_num': all_number,
}
return self.cmvn_info