|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
#
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
# You may obtain a copy of the License at
|
|
|
#
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
#
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
import base64
|
|
|
import math
|
|
|
import os
|
|
|
import time
|
|
|
from typing import Optional
|
|
|
|
|
|
import numpy as np
|
|
|
import paddle
|
|
|
|
|
|
from paddlespeech.cli.log import logger
|
|
|
from paddlespeech.cli.tts.infer import TTSExecutor
|
|
|
from paddlespeech.resource import CommonTaskResource
|
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
|
from paddlespeech.server.utils.audio_process import float2pcm
|
|
|
from paddlespeech.server.utils.onnx_infer import get_sess
|
|
|
from paddlespeech.server.utils.util import denorm
|
|
|
from paddlespeech.server.utils.util import get_chunks
|
|
|
from paddlespeech.t2s.frontend import English
|
|
|
from paddlespeech.t2s.frontend.zh_frontend import Frontend
|
|
|
|
|
|
__all__ = ['TTSEngine', 'PaddleTTSConnectionHandler']
|
|
|
|
|
|
|
|
|
class TTSServerExecutor(TTSExecutor):
|
|
|
def __init__(self):
|
|
|
super().__init__()
|
|
|
self.task_resource = CommonTaskResource(task='tts', model_format='onnx')
|
|
|
|
|
|
def _init_from_path(
|
|
|
self,
|
|
|
am: str='fastspeech2_csmsc_onnx',
|
|
|
am_ckpt: Optional[list]=None,
|
|
|
am_stat: Optional[os.PathLike]=None,
|
|
|
phones_dict: Optional[os.PathLike]=None,
|
|
|
tones_dict: Optional[os.PathLike]=None,
|
|
|
speaker_dict: Optional[os.PathLike]=None,
|
|
|
am_sample_rate: int=24000,
|
|
|
am_sess_conf: dict=None,
|
|
|
voc: str='mb_melgan_csmsc_onnx',
|
|
|
voc_ckpt: Optional[os.PathLike]=None,
|
|
|
voc_sample_rate: int=24000,
|
|
|
voc_sess_conf: dict=None,
|
|
|
lang: str='zh', ):
|
|
|
"""
|
|
|
Init model and other resources from a specific path.
|
|
|
"""
|
|
|
|
|
|
if (hasattr(self, 'am_sess') or
|
|
|
(hasattr(self, 'am_encoder_infer_sess') and
|
|
|
hasattr(self, 'am_decoder_sess') and hasattr(
|
|
|
self, 'am_postnet_sess'))) and hasattr(self, 'voc_inference'):
|
|
|
logger.debug('Models had been initialized.')
|
|
|
return
|
|
|
|
|
|
# am
|
|
|
am_tag = am + '-' + lang
|
|
|
if am == "fastspeech2_csmsc_onnx":
|
|
|
# get model info
|
|
|
if am_ckpt is None or phones_dict is None:
|
|
|
self.task_resource.set_task_model(
|
|
|
model_tag=am_tag,
|
|
|
model_type=0, # am
|
|
|
version=None, # default version
|
|
|
)
|
|
|
self.am_res_path = self.task_resource.res_dir
|
|
|
self.am_ckpt = os.path.join(
|
|
|
self.am_res_path, self.task_resource.res_dict['ckpt'][0])
|
|
|
# must have phones_dict in acoustic
|
|
|
self.phones_dict = os.path.join(
|
|
|
self.am_res_path,
|
|
|
self.task_resource.res_dict['phones_dict'])
|
|
|
|
|
|
else:
|
|
|
self.am_ckpt = os.path.abspath(am_ckpt[0])
|
|
|
self.phones_dict = os.path.abspath(phones_dict)
|
|
|
self.am_res_path = os.path.dirname(os.path.abspath(am_ckpt))
|
|
|
|
|
|
# create am sess
|
|
|
self.am_sess = get_sess(self.am_ckpt, am_sess_conf)
|
|
|
|
|
|
elif am == "fastspeech2_cnndecoder_csmsc_onnx":
|
|
|
if am_ckpt is None or am_stat is None or phones_dict is None:
|
|
|
self.task_resource.set_task_model(
|
|
|
model_tag=am_tag,
|
|
|
model_type=0, # am
|
|
|
version=None, # default version
|
|
|
)
|
|
|
self.am_res_path = self.task_resource.res_dir
|
|
|
self.am_encoder_infer = os.path.join(
|
|
|
self.am_res_path, self.task_resource.res_dict['ckpt'][0])
|
|
|
self.am_decoder = os.path.join(
|
|
|
self.am_res_path, self.task_resource.res_dict['ckpt'][1])
|
|
|
self.am_postnet = os.path.join(
|
|
|
self.am_res_path, self.task_resource.res_dict['ckpt'][2])
|
|
|
# must have phones_dict in acoustic
|
|
|
self.phones_dict = os.path.join(
|
|
|
self.am_res_path,
|
|
|
self.task_resource.res_dict['phones_dict'])
|
|
|
self.am_stat = os.path.join(
|
|
|
self.am_res_path,
|
|
|
self.task_resource.res_dict['speech_stats'])
|
|
|
|
|
|
else:
|
|
|
self.am_encoder_infer = os.path.abspath(am_ckpt[0])
|
|
|
self.am_decoder = os.path.abspath(am_ckpt[1])
|
|
|
self.am_postnet = os.path.abspath(am_ckpt[2])
|
|
|
self.phones_dict = os.path.abspath(phones_dict)
|
|
|
self.am_stat = os.path.abspath(am_stat)
|
|
|
self.am_res_path = os.path.dirname(os.path.abspath(am_ckpt[0]))
|
|
|
|
|
|
# create am sess
|
|
|
self.am_encoder_infer_sess = get_sess(self.am_encoder_infer,
|
|
|
am_sess_conf)
|
|
|
self.am_decoder_sess = get_sess(self.am_decoder, am_sess_conf)
|
|
|
self.am_postnet_sess = get_sess(self.am_postnet, am_sess_conf)
|
|
|
|
|
|
self.am_mu, self.am_std = np.load(self.am_stat)
|
|
|
|
|
|
logger.debug(f"self.phones_dict: {self.phones_dict}")
|
|
|
logger.debug(f"am model dir: {self.am_res_path}")
|
|
|
logger.debug("Create am sess successfully.")
|
|
|
|
|
|
# voc model info
|
|
|
voc_tag = voc + '-' + lang
|
|
|
|
|
|
if voc_ckpt is None:
|
|
|
self.task_resource.set_task_model(
|
|
|
model_tag=voc_tag,
|
|
|
model_type=1, # vocoder
|
|
|
version=None, # default version
|
|
|
)
|
|
|
self.voc_res_path = self.task_resource.voc_res_dir
|
|
|
self.voc_ckpt = os.path.join(
|
|
|
self.voc_res_path, self.task_resource.voc_res_dict['ckpt'])
|
|
|
else:
|
|
|
self.voc_ckpt = os.path.abspath(voc_ckpt)
|
|
|
self.voc_res_path = os.path.dirname(os.path.abspath(self.voc_ckpt))
|
|
|
logger.debug(self.voc_res_path)
|
|
|
|
|
|
# create voc sess
|
|
|
self.voc_sess = get_sess(self.voc_ckpt, voc_sess_conf)
|
|
|
logger.debug("Create voc sess successfully.")
|
|
|
|
|
|
with open(self.phones_dict, "r") as f:
|
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
|
self.vocab_size = len(phn_id)
|
|
|
logger.debug(f"vocab_size: {self.vocab_size}")
|
|
|
|
|
|
# frontend
|
|
|
self.tones_dict = None
|
|
|
if lang == 'zh':
|
|
|
self.frontend = Frontend(
|
|
|
phone_vocab_path=self.phones_dict,
|
|
|
tone_vocab_path=self.tones_dict)
|
|
|
|
|
|
elif lang == 'en':
|
|
|
self.frontend = English(phone_vocab_path=self.phones_dict)
|
|
|
logger.debug("frontend done!")
|
|
|
|
|
|
|
|
|
class TTSEngine(BaseEngine):
|
|
|
"""TTS server engine
|
|
|
|
|
|
Args:
|
|
|
metaclass: Defaults to Singleton.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, name=None):
|
|
|
"""Initialize TTS server engine
|
|
|
"""
|
|
|
super().__init__()
|
|
|
|
|
|
def init(self, config: dict) -> bool:
|
|
|
self.executor = TTSServerExecutor()
|
|
|
self.config = config
|
|
|
self.lang = self.config.lang
|
|
|
self.engine_type = "online-onnx"
|
|
|
|
|
|
self.am_block = self.config.am_block
|
|
|
self.am_pad = self.config.am_pad
|
|
|
self.voc_block = self.config.voc_block
|
|
|
self.voc_pad = self.config.voc_pad
|
|
|
self.am_upsample = 1
|
|
|
self.voc_upsample = self.config.voc_upsample
|
|
|
|
|
|
assert (
|
|
|
self.config.am == "fastspeech2_csmsc_onnx" or
|
|
|
self.config.am == "fastspeech2_cnndecoder_csmsc_onnx"
|
|
|
) and (
|
|
|
self.config.voc == "hifigan_csmsc_onnx" or
|
|
|
self.config.voc == "mb_melgan_csmsc_onnx"
|
|
|
), 'Please check config, am support: fastspeech2, voc support: hifigan_csmsc-zh or mb_melgan_csmsc.'
|
|
|
|
|
|
assert (
|
|
|
self.config.voc_block > 0 and self.config.voc_pad > 0
|
|
|
), "Please set correct voc_block and voc_pad, they should be more than 0."
|
|
|
|
|
|
assert (
|
|
|
self.config.voc_sample_rate == self.config.am_sample_rate
|
|
|
), "The sample rate of AM and Vocoder model are different, please check model."
|
|
|
|
|
|
self.sample_rate = self.config.voc_sample_rate
|
|
|
|
|
|
try:
|
|
|
if self.config.am_sess_conf.device is not None:
|
|
|
self.device = self.config.am_sess_conf.device
|
|
|
elif self.config.voc_sess_conf.device is not None:
|
|
|
self.device = self.config.voc_sess_conf.device
|
|
|
else:
|
|
|
self.device = paddle.get_device()
|
|
|
paddle.set_device(self.device)
|
|
|
except Exception as e:
|
|
|
logger.error(
|
|
|
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
|
|
|
)
|
|
|
logger.error("Initialize TTS server engine Failed on device: %s." %
|
|
|
(self.device))
|
|
|
logger.error(e)
|
|
|
return False
|
|
|
|
|
|
try:
|
|
|
self.executor._init_from_path(
|
|
|
am=self.config.am,
|
|
|
am_ckpt=self.config.am_ckpt,
|
|
|
am_stat=self.config.am_stat,
|
|
|
phones_dict=self.config.phones_dict,
|
|
|
tones_dict=self.config.tones_dict,
|
|
|
speaker_dict=self.config.speaker_dict,
|
|
|
am_sample_rate=self.config.am_sample_rate,
|
|
|
am_sess_conf=self.config.am_sess_conf,
|
|
|
voc=self.config.voc,
|
|
|
voc_ckpt=self.config.voc_ckpt,
|
|
|
voc_sample_rate=self.config.voc_sample_rate,
|
|
|
voc_sess_conf=self.config.voc_sess_conf,
|
|
|
lang=self.config.lang)
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error("Failed to get model related files.")
|
|
|
logger.error("Initialize TTS server engine Failed on device: %s." %
|
|
|
(self.config.voc_sess_conf.device))
|
|
|
logger(e)
|
|
|
return False
|
|
|
|
|
|
logger.info("Initialize TTS server engine successfully on device: %s." %
|
|
|
(self.config.voc_sess_conf.device))
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
class PaddleTTSConnectionHandler:
|
|
|
def __init__(self, tts_engine):
|
|
|
"""The PaddleSpeech TTS Server Connection Handler
|
|
|
This connection process every tts server request
|
|
|
Args:
|
|
|
tts_engine (TTSEngine): The TTS engine
|
|
|
"""
|
|
|
super().__init__()
|
|
|
logger.debug(
|
|
|
"Create PaddleTTSConnectionHandler to process the tts request")
|
|
|
|
|
|
self.tts_engine = tts_engine
|
|
|
self.executor = self.tts_engine.executor
|
|
|
self.config = self.tts_engine.config
|
|
|
self.am_block = self.tts_engine.am_block
|
|
|
self.am_pad = self.tts_engine.am_pad
|
|
|
self.voc_block = self.tts_engine.voc_block
|
|
|
self.voc_pad = self.tts_engine.voc_pad
|
|
|
self.am_upsample = self.tts_engine.am_upsample
|
|
|
self.voc_upsample = self.tts_engine.voc_upsample
|
|
|
|
|
|
def depadding(self, data, chunk_num, chunk_id, block, pad, upsample):
|
|
|
"""
|
|
|
Streaming inference removes the result of pad inference
|
|
|
"""
|
|
|
front_pad = min(chunk_id * block, pad)
|
|
|
# first chunk
|
|
|
if chunk_id == 0:
|
|
|
data = data[:block * upsample]
|
|
|
# last chunk
|
|
|
elif chunk_id == chunk_num - 1:
|
|
|
data = data[front_pad * upsample:]
|
|
|
# middle chunk
|
|
|
else:
|
|
|
data = data[front_pad * upsample:(front_pad + block) * upsample]
|
|
|
|
|
|
return data
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
def infer(
|
|
|
self,
|
|
|
text: str,
|
|
|
lang: str='zh',
|
|
|
am: str='fastspeech2_csmsc_onnx',
|
|
|
spk_id: int=0, ):
|
|
|
"""
|
|
|
Model inference and result stored in self.output.
|
|
|
"""
|
|
|
|
|
|
# first_flag 用于标记首包
|
|
|
first_flag = 1
|
|
|
get_tone_ids = False
|
|
|
merge_sentences = False
|
|
|
|
|
|
# front
|
|
|
frontend_st = time.time()
|
|
|
if lang == 'zh':
|
|
|
input_ids = self.executor.frontend.get_input_ids(
|
|
|
text,
|
|
|
merge_sentences=merge_sentences,
|
|
|
get_tone_ids=get_tone_ids)
|
|
|
phone_ids = input_ids["phone_ids"]
|
|
|
if get_tone_ids:
|
|
|
tone_ids = input_ids["tone_ids"]
|
|
|
elif lang == 'en':
|
|
|
input_ids = self.executor.frontend.get_input_ids(
|
|
|
text, merge_sentences=merge_sentences)
|
|
|
phone_ids = input_ids["phone_ids"]
|
|
|
else:
|
|
|
logger.error("lang should in {'zh', 'en'}!")
|
|
|
frontend_et = time.time()
|
|
|
self.frontend_time = frontend_et - frontend_st
|
|
|
|
|
|
for i in range(len(phone_ids)):
|
|
|
part_phone_ids = phone_ids[i].numpy()
|
|
|
voc_chunk_id = 0
|
|
|
|
|
|
# fastspeech2_csmsc
|
|
|
if am == "fastspeech2_csmsc_onnx":
|
|
|
# am
|
|
|
mel = self.executor.am_sess.run(
|
|
|
output_names=None, input_feed={'text': part_phone_ids})
|
|
|
mel = mel[0]
|
|
|
if first_flag == 1:
|
|
|
first_am_et = time.time()
|
|
|
self.first_am_infer = first_am_et - frontend_et
|
|
|
|
|
|
# voc streaming
|
|
|
mel_chunks = get_chunks(mel, self.voc_block, self.voc_pad,
|
|
|
"voc")
|
|
|
voc_chunk_num = len(mel_chunks)
|
|
|
voc_st = time.time()
|
|
|
for i, mel_chunk in enumerate(mel_chunks):
|
|
|
sub_wav = self.executor.voc_sess.run(
|
|
|
output_names=None, input_feed={'logmel': mel_chunk})
|
|
|
sub_wav = self.depadding(sub_wav[0], voc_chunk_num, i,
|
|
|
self.voc_block, self.voc_pad,
|
|
|
self.voc_upsample)
|
|
|
if first_flag == 1:
|
|
|
first_voc_et = time.time()
|
|
|
self.first_voc_infer = first_voc_et - first_am_et
|
|
|
self.first_response_time = first_voc_et - frontend_st
|
|
|
first_flag = 0
|
|
|
|
|
|
yield sub_wav
|
|
|
|
|
|
# fastspeech2_cnndecoder_csmsc
|
|
|
elif am == "fastspeech2_cnndecoder_csmsc_onnx":
|
|
|
# am
|
|
|
orig_hs = self.executor.am_encoder_infer_sess.run(
|
|
|
None, input_feed={'text': part_phone_ids})
|
|
|
orig_hs = orig_hs[0]
|
|
|
|
|
|
# streaming voc chunk info
|
|
|
mel_len = orig_hs.shape[1]
|
|
|
voc_chunk_num = math.ceil(mel_len / self.voc_block)
|
|
|
start = 0
|
|
|
end = min(self.voc_block + self.voc_pad, mel_len)
|
|
|
|
|
|
# streaming am
|
|
|
hss = get_chunks(orig_hs, self.am_block, self.am_pad, "am")
|
|
|
am_chunk_num = len(hss)
|
|
|
for i, hs in enumerate(hss):
|
|
|
am_decoder_output = self.executor.am_decoder_sess.run(
|
|
|
None, input_feed={'xs': hs})
|
|
|
am_postnet_output = self.executor.am_postnet_sess.run(
|
|
|
None,
|
|
|
input_feed={
|
|
|
'xs': np.transpose(am_decoder_output[0], (0, 2, 1))
|
|
|
})
|
|
|
am_output_data = am_decoder_output + np.transpose(
|
|
|
am_postnet_output[0], (0, 2, 1))
|
|
|
normalized_mel = am_output_data[0][0]
|
|
|
|
|
|
sub_mel = denorm(normalized_mel, self.executor.am_mu,
|
|
|
self.executor.am_std)
|
|
|
sub_mel = self.depadding(sub_mel, am_chunk_num, i,
|
|
|
self.am_block, self.am_pad,
|
|
|
self.am_upsample)
|
|
|
|
|
|
if i == 0:
|
|
|
mel_streaming = sub_mel
|
|
|
else:
|
|
|
mel_streaming = np.concatenate(
|
|
|
(mel_streaming, sub_mel), axis=0)
|
|
|
|
|
|
# streaming voc
|
|
|
# 当流式AM推理的mel帧数大于流式voc推理的chunk size,开始进行流式voc 推理
|
|
|
while (mel_streaming.shape[0] >= end and
|
|
|
voc_chunk_id < voc_chunk_num):
|
|
|
if first_flag == 1:
|
|
|
first_am_et = time.time()
|
|
|
self.first_am_infer = first_am_et - frontend_et
|
|
|
voc_chunk = mel_streaming[start:end, :]
|
|
|
|
|
|
sub_wav = self.executor.voc_sess.run(
|
|
|
output_names=None, input_feed={'logmel': voc_chunk})
|
|
|
sub_wav = self.depadding(
|
|
|
sub_wav[0], voc_chunk_num, voc_chunk_id,
|
|
|
self.voc_block, self.voc_pad, self.voc_upsample)
|
|
|
if first_flag == 1:
|
|
|
first_voc_et = time.time()
|
|
|
self.first_voc_infer = first_voc_et - first_am_et
|
|
|
self.first_response_time = first_voc_et - frontend_st
|
|
|
first_flag = 0
|
|
|
|
|
|
yield sub_wav
|
|
|
|
|
|
voc_chunk_id += 1
|
|
|
start = max(
|
|
|
0, voc_chunk_id * self.voc_block - self.voc_pad)
|
|
|
end = min(
|
|
|
(voc_chunk_id + 1) * self.voc_block + self.voc_pad,
|
|
|
mel_len)
|
|
|
|
|
|
else:
|
|
|
logger.error(
|
|
|
"Only support fastspeech2_csmsc or fastspeech2_cnndecoder_csmsc on streaming tts."
|
|
|
)
|
|
|
|
|
|
self.final_response_time = time.time() - frontend_st
|
|
|
|
|
|
def run(self, sentence: str, spk_id: int=0):
|
|
|
""" run include inference and postprocess.
|
|
|
|
|
|
Args:
|
|
|
sentence (str): text to be synthesized
|
|
|
spk_id (int, optional): speaker id for multi-speaker speech synthesis. Defaults to 0.
|
|
|
|
|
|
Returns:
|
|
|
wav_base64: The base64 format of the synthesized audio.
|
|
|
"""
|
|
|
wav_list = []
|
|
|
|
|
|
for wav in self.infer(
|
|
|
text=sentence,
|
|
|
lang=self.config.lang,
|
|
|
am=self.config.am,
|
|
|
spk_id=spk_id, ):
|
|
|
|
|
|
# wav type: <class 'numpy.ndarray'> float32, convert to pcm (base64)
|
|
|
wav = float2pcm(wav) # float32 to int16
|
|
|
wav_bytes = wav.tobytes() # to bytes
|
|
|
wav_base64 = base64.b64encode(wav_bytes).decode('utf8') # to base64
|
|
|
wav_list.append(wav)
|
|
|
|
|
|
yield wav_base64
|
|
|
|
|
|
wav_all = np.concatenate(wav_list, axis=0)
|
|
|
duration = len(wav_all) / self.tts_engine.sample_rate
|
|
|
logger.info(f"sentence: {sentence}")
|
|
|
logger.info(f"The durations of audio is: {duration} s")
|
|
|
logger.info(f"first response time: {self.first_response_time} s")
|
|
|
logger.info(f"final response time: {self.final_response_time} s")
|
|
|
logger.info(f"RTF: {self.final_response_time / duration}")
|
|
|
logger.info(
|
|
|
f"Other info: front time: {self.frontend_time} s, first am infer time: {self.first_am_infer} s, first voc infer time: {self.first_voc_infer} s,"
|
|
|
)
|