You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
xiongxinlei
5793f1bc1a
|
3 years ago | |
---|---|---|
.. | ||
conf | 3 years ago | |
README.md | 3 years ago | |
README_cn.md | 3 years ago | |
acs_clinet.py | 3 years ago | |
run.sh | 3 years ago |
README.md
(简体中文|English)
ACS (Audio Content Search)
Introduction
ACS, or Audio Content Search, refers to the problem of getting the key word time stamp from automatically transcribe spoken language (speech-to-text).
This demo is an implementation of obtaining the keyword timestamp in the text from a given audio file. It can be done by a single command or a few lines in python using PaddleSpeech
.
Now, the search word in demo is:
我
康
Usage
1. Installation
see installation.
You can choose one way from meduim and hard to install paddlespeech.
The dependency refers to the requirements.txt
2. Prepare Input File
The input of this demo should be a WAV file(.wav
), and the sample rate must be the same as the model.
Here are sample files for this demo that can be downloaded:
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav
3. Usage
-
Command Line(Recommended)
# Chinese paddlespeech_client acs --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
Usage:
paddlespeech asr --help
Arguments:
input
(required): Audio file to recognize.server_ip
: the server ip.port
: the server port.lang
: the language type of the model. Default:zh
.sample_rate
: Sample rate of the model. Default:16000
.audio_format
: The audio format.
Output:
[2022-05-15 15:00:58,185] [ INFO] - acs http client start [2022-05-15 15:00:58,185] [ INFO] - endpoint: http://127.0.0.1:8490/paddlespeech/asr/search [2022-05-15 15:01:03,220] [ INFO] - acs http client finished [2022-05-15 15:01:03,221] [ INFO] - ACS result: {'transcription': '我认为跑步最重要的就是给我带来了身体健康', 'acs': [{'w': '我', 'bg': 0, 'ed': 1.6800000000000002}, {'w': '我', 'bg': 2.1, 'ed': 4.28}, {'w': '康', 'bg': 3.2, 'ed': 4.92}]} [2022-05-15 15:01:03,221] [ INFO] - Response time 5.036084 s.
-
Python API
from paddlespeech.server.bin.paddlespeech_client import ACSClientExecutor acs_executor = ACSClientExecutor() res = acs_executor( input='./zh.wav', server_ip="127.0.0.1", port=8490,) print(res)
Output:
[2022-05-15 15:08:13,955] [ INFO] - acs http client start [2022-05-15 15:08:13,956] [ INFO] - endpoint: http://127.0.0.1:8490/paddlespeech/asr/search [2022-05-15 15:08:19,026] [ INFO] - acs http client finished {'transcription': '我认为跑步最重要的就是给我带来了身体健康', 'acs': [{'w': '我', 'bg': 0, 'ed': 1.6800000000000002}, {'w': '我', 'bg': 2.1, 'ed': 4.28}, {'w': '康', 'bg': 3.2, 'ed': 4.92}]}