You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
5.3 KiB
161 lines
5.3 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import librosa
|
|
import numpy as np
|
|
import pandas as pd
|
|
import tqdm
|
|
|
|
from parakeet.audio import LogMagnitude
|
|
from parakeet.datasets import LJSpeechMetaData
|
|
from parakeet.exps.waveflow.config import get_cfg_defaults
|
|
|
|
|
|
class Transform(object):
|
|
def __init__(self, sample_rate, n_fft, win_length, hop_length, n_mels, fmin,
|
|
fmax):
|
|
self.sample_rate = sample_rate
|
|
self.n_fft = n_fft
|
|
self.win_length = win_length
|
|
self.hop_length = hop_length
|
|
self.n_mels = n_mels
|
|
self.fmin = fmin
|
|
self.fmax = fmax
|
|
|
|
self.spec_normalizer = LogMagnitude(min=1e-5)
|
|
|
|
def __call__(self, example):
|
|
wav_path, _, _ = example
|
|
|
|
sr = self.sample_rate
|
|
n_fft = self.n_fft
|
|
win_length = self.win_length
|
|
hop_length = self.hop_length
|
|
n_mels = self.n_mels
|
|
fmin = self.fmin
|
|
fmax = self.fmax
|
|
|
|
wav, loaded_sr = librosa.load(wav_path, sr=None)
|
|
assert loaded_sr == sr, "sample rate does not match, resampling applied"
|
|
|
|
# Pad audio to the right size.
|
|
frames = int(np.ceil(float(wav.size) / hop_length))
|
|
fft_padding = (n_fft - hop_length) // 2 # sound
|
|
desired_length = frames * hop_length + fft_padding * 2
|
|
pad_amount = (desired_length - wav.size) // 2
|
|
|
|
if wav.size % 2 == 0:
|
|
wav = np.pad(wav, (pad_amount, pad_amount), mode='reflect')
|
|
else:
|
|
wav = np.pad(wav, (pad_amount, pad_amount + 1), mode='reflect')
|
|
|
|
# Normalize audio.
|
|
wav = wav / np.abs(wav).max() * 0.999
|
|
|
|
# Compute mel-spectrogram.
|
|
# Turn center to False to prevent internal padding.
|
|
spectrogram = librosa.core.stft(
|
|
wav,
|
|
hop_length=hop_length,
|
|
win_length=win_length,
|
|
n_fft=n_fft,
|
|
center=False)
|
|
spectrogram_magnitude = np.abs(spectrogram)
|
|
|
|
# Compute mel-spectrograms.
|
|
mel_filter_bank = librosa.filters.mel(
|
|
sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
|
|
mel_spectrogram = np.dot(mel_filter_bank, spectrogram_magnitude)
|
|
|
|
# log scale mel_spectrogram.
|
|
mel_spectrogram = self.spec_normalizer.transform(mel_spectrogram)
|
|
|
|
# Extract the center of audio that corresponds to mel spectrograms.
|
|
audio = wav[fft_padding:-fft_padding]
|
|
assert mel_spectrogram.shape[1] * hop_length == audio.size
|
|
|
|
# there is no clipping here
|
|
return audio, mel_spectrogram
|
|
|
|
|
|
def create_dataset(config, input_dir, output_dir):
|
|
input_dir = Path(input_dir).expanduser()
|
|
dataset = LJSpeechMetaData(input_dir)
|
|
|
|
output_dir = Path(output_dir).expanduser()
|
|
output_dir.mkdir(exist_ok=True)
|
|
|
|
transform = Transform(config.sample_rate, config.n_fft, config.win_length,
|
|
config.hop_length, config.n_mels, config.fmin,
|
|
config.fmax)
|
|
file_names = []
|
|
|
|
for example in tqdm.tqdm(dataset):
|
|
fname, _, _ = example
|
|
base_name = os.path.splitext(os.path.basename(fname))[0]
|
|
wav_dir = output_dir / "wav"
|
|
mel_dir = output_dir / "mel"
|
|
wav_dir.mkdir(exist_ok=True)
|
|
mel_dir.mkdir(exist_ok=True)
|
|
|
|
audio, mel = transform(example)
|
|
np.save(str(wav_dir / base_name), audio)
|
|
np.save(str(mel_dir / base_name), mel)
|
|
|
|
file_names.append((base_name, mel.shape[-1], audio.shape[-1]))
|
|
|
|
meta_data = pd.DataFrame.from_records(file_names)
|
|
meta_data.to_csv(
|
|
str(output_dir / "metadata.csv"), sep="\t", index=None, header=None)
|
|
print("saved meta data in to {}".format(
|
|
os.path.join(output_dir, "metadata.csv")))
|
|
|
|
print("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="create dataset")
|
|
parser.add_argument(
|
|
"--config",
|
|
type=str,
|
|
metavar="FILE",
|
|
help="extra config to overwrite the default config")
|
|
parser.add_argument(
|
|
"--input", type=str, help="path of the ljspeech dataset")
|
|
parser.add_argument(
|
|
"--output", type=str, help="path to save output dataset")
|
|
parser.add_argument(
|
|
"--opts",
|
|
nargs=argparse.REMAINDER,
|
|
help="options to overwrite --config file and the default config, passing in KEY VALUE pairs"
|
|
)
|
|
parser.add_argument(
|
|
"-v", "--verbose", action="store_true", help="print msg")
|
|
|
|
config = get_cfg_defaults()
|
|
args = parser.parse_args()
|
|
if args.config:
|
|
config.merge_from_file(args.config)
|
|
if args.opts:
|
|
config.merge_from_list(args.opts)
|
|
config.freeze()
|
|
if args.verbose:
|
|
print(config.data)
|
|
print(args)
|
|
|
|
create_dataset(config.data, args.input, args.output)
|