You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
220 lines
6.7 KiB
220 lines
6.7 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.nn import functional as F
|
|
from scipy import signal
|
|
|
|
|
|
def stft(x,
|
|
fft_size,
|
|
hop_length=None,
|
|
win_length=None,
|
|
window='hann',
|
|
center=True,
|
|
pad_mode='reflect'):
|
|
"""Perform STFT and convert to magnitude spectrogram.
|
|
Parameters
|
|
----------
|
|
x : Tensor
|
|
Input signal tensor (B, T).
|
|
fft_size : int
|
|
FFT size.
|
|
hop_size : int
|
|
Hop size.
|
|
win_length : int
|
|
window : str, optional
|
|
window : str
|
|
Name of window function, see `scipy.signal.get_window` for more
|
|
details. Defaults to "hann".
|
|
center : bool, optional
|
|
center (bool, optional): Whether to pad `x` to make that the
|
|
:math:`t \times hop\_length` at the center of :math:`t`-th frame. Default: `True`.
|
|
pad_mode : str, optional
|
|
Choose padding pattern when `center` is `True`.
|
|
Returns
|
|
----------
|
|
Tensor:
|
|
Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
|
"""
|
|
# calculate window
|
|
window = signal.get_window(window, win_length, fftbins=True)
|
|
window = paddle.to_tensor(window)
|
|
x_stft = paddle.tensor.signal.stft(
|
|
x,
|
|
fft_size,
|
|
hop_length,
|
|
win_length,
|
|
window=window,
|
|
center=center,
|
|
pad_mode=pad_mode)
|
|
|
|
real = x_stft.real()
|
|
imag = x_stft.imag()
|
|
|
|
return paddle.sqrt(paddle.clip(real**2 + imag**2, min=1e-7)).transpose(
|
|
[0, 2, 1])
|
|
|
|
|
|
class SpectralConvergenceLoss(nn.Layer):
|
|
"""Spectral convergence loss module."""
|
|
|
|
def __init__(self):
|
|
"""Initilize spectral convergence loss module."""
|
|
super().__init__()
|
|
|
|
def forward(self, x_mag, y_mag):
|
|
"""Calculate forward propagation.
|
|
Parameters
|
|
----------
|
|
x_mag : Tensor
|
|
Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
|
y_mag : Tensor)
|
|
Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Spectral convergence loss value.
|
|
"""
|
|
return paddle.norm(
|
|
y_mag - x_mag, p="fro") / paddle.clip(
|
|
paddle.norm(y_mag, p="fro"), min=1e-10)
|
|
|
|
|
|
class LogSTFTMagnitudeLoss(nn.Layer):
|
|
"""Log STFT magnitude loss module."""
|
|
|
|
def __init__(self, epsilon=1e-7):
|
|
"""Initilize los STFT magnitude loss module."""
|
|
super().__init__()
|
|
self.epsilon = epsilon
|
|
|
|
def forward(self, x_mag, y_mag):
|
|
"""Calculate forward propagation.
|
|
Parameters
|
|
----------
|
|
x_mag : Tensor
|
|
Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
|
y_mag : Tensor
|
|
Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Log STFT magnitude loss value.
|
|
"""
|
|
return F.l1_loss(
|
|
paddle.log(paddle.clip(y_mag, min=self.epsilon)),
|
|
paddle.log(paddle.clip(x_mag, min=self.epsilon)))
|
|
|
|
|
|
class STFTLoss(nn.Layer):
|
|
"""STFT loss module."""
|
|
|
|
def __init__(self,
|
|
fft_size=1024,
|
|
shift_size=120,
|
|
win_length=600,
|
|
window="hann"):
|
|
"""Initialize STFT loss module."""
|
|
super().__init__()
|
|
self.fft_size = fft_size
|
|
self.shift_size = shift_size
|
|
self.win_length = win_length
|
|
self.window = window
|
|
self.spectral_convergence_loss = SpectralConvergenceLoss()
|
|
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
|
|
|
|
def forward(self, x, y):
|
|
"""Calculate forward propagation.
|
|
Parameters
|
|
----------
|
|
x : Tensor
|
|
Predicted signal (B, T).
|
|
y : Tensor
|
|
Groundtruth signal (B, T).
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Spectral convergence loss value.
|
|
Tensor
|
|
Log STFT magnitude loss value.
|
|
"""
|
|
x_mag = stft(x, self.fft_size, self.shift_size, self.win_length,
|
|
self.window)
|
|
y_mag = stft(y, self.fft_size, self.shift_size, self.win_length,
|
|
self.window)
|
|
sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
|
|
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
|
|
|
|
return sc_loss, mag_loss
|
|
|
|
|
|
class MultiResolutionSTFTLoss(nn.Layer):
|
|
"""Multi resolution STFT loss module."""
|
|
|
|
def __init__(
|
|
self,
|
|
fft_sizes=[1024, 2048, 512],
|
|
hop_sizes=[120, 240, 50],
|
|
win_lengths=[600, 1200, 240],
|
|
window="hann", ):
|
|
"""Initialize Multi resolution STFT loss module.
|
|
Parameters
|
|
----------
|
|
fft_sizes : list
|
|
List of FFT sizes.
|
|
hop_sizes : list
|
|
List of hop sizes.
|
|
win_lengths : list
|
|
List of window lengths.
|
|
window : str
|
|
Window function type.
|
|
"""
|
|
super().__init__()
|
|
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
|
|
self.stft_losses = nn.LayerList()
|
|
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
|
self.stft_losses.append(STFTLoss(fs, ss, wl, window))
|
|
|
|
def forward(self, x, y):
|
|
"""Calculate forward propagation.
|
|
Parameters
|
|
----------
|
|
x : Tensor
|
|
Predicted signal (B, T) or (B, #subband, T).
|
|
y : Tensor
|
|
Groundtruth signal (B, T) or (B, #subband, T).
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Multi resolution spectral convergence loss value.
|
|
Tensor
|
|
Multi resolution log STFT magnitude loss value.
|
|
"""
|
|
if len(x.shape) == 3:
|
|
# (B, C, T) -> (B x C, T)
|
|
x = x.reshape([-1, x.shape[2]])
|
|
# (B, C, T) -> (B x C, T)
|
|
y = y.reshape([-1, y.shape[2]])
|
|
sc_loss = 0.0
|
|
mag_loss = 0.0
|
|
for f in self.stft_losses:
|
|
sc_l, mag_l = f(x, y)
|
|
sc_loss += sc_l
|
|
mag_loss += mag_l
|
|
sc_loss /= len(self.stft_losses)
|
|
mag_loss /= len(self.stft_losses)
|
|
|
|
return sc_loss, mag_loss
|