You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
4.2 KiB
129 lines
4.2 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any
|
|
from typing import Dict
|
|
from typing import Text
|
|
from typing import Union
|
|
|
|
from paddle.optimizer.lr import LRScheduler
|
|
from typeguard import check_argument_types
|
|
|
|
from deepspeech.utils.dynamic_import import dynamic_import
|
|
from deepspeech.utils.dynamic_import import instance_class
|
|
from deepspeech.utils.log import Log
|
|
|
|
__all__ = ["WarmupLR", "LRSchedulerFactory"]
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
SCHEDULER_DICT = {
|
|
"noam": "paddle.optimizer.lr:NoamDecay",
|
|
"expdecaylr": "paddle.optimizer.lr:ExponentialDecay",
|
|
"piecewisedecay": "paddle.optimizer.lr:PiecewiseDecay",
|
|
}
|
|
|
|
|
|
def register_scheduler(cls):
|
|
"""Register scheduler."""
|
|
alias = cls.__name__.lower()
|
|
SCHEDULER_DICT[cls.__name__.lower()] = cls.__module__ + ":" + cls.__name__
|
|
return cls
|
|
|
|
|
|
@register_scheduler
|
|
class WarmupLR(LRScheduler):
|
|
"""The WarmupLR scheduler
|
|
This scheduler is almost same as NoamLR Scheduler except for following
|
|
difference:
|
|
NoamLR:
|
|
lr = optimizer.lr * model_size ** -0.5
|
|
* min(step ** -0.5, step * warmup_step ** -1.5)
|
|
WarmupLR:
|
|
lr = optimizer.lr * warmup_step ** 0.5
|
|
* min(step ** -0.5, step * warmup_step ** -1.5)
|
|
Note that the maximum lr equals to optimizer.lr in this scheduler.
|
|
"""
|
|
|
|
def __init__(self,
|
|
warmup_steps: Union[int, float]=25000,
|
|
learning_rate=1.0,
|
|
last_epoch=-1,
|
|
verbose=False,
|
|
**kwargs):
|
|
assert check_argument_types()
|
|
self.warmup_steps = warmup_steps
|
|
super().__init__(learning_rate, last_epoch, verbose)
|
|
|
|
def __repr__(self):
|
|
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
|
|
|
|
def get_lr(self):
|
|
step_num = self.last_epoch + 1
|
|
return self.base_lr * self.warmup_steps**0.5 * min(
|
|
step_num**-0.5, step_num * self.warmup_steps**-1.5)
|
|
|
|
def set_step(self, step: int=None):
|
|
'''
|
|
It will update the learning rate in optimizer according to current ``epoch`` .
|
|
The new learning rate will take effect on next ``optimizer.step`` .
|
|
|
|
Args:
|
|
step (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.
|
|
Returns:
|
|
None
|
|
'''
|
|
self.step(epoch=step)
|
|
|
|
|
|
@register_scheduler
|
|
class ConstantLR(LRScheduler):
|
|
"""
|
|
Args:
|
|
learning_rate (float): The initial learning rate. It is a python float number.
|
|
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
|
|
verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
|
|
|
|
Returns:
|
|
``ConstantLR`` instance to schedule learning rate.
|
|
"""
|
|
|
|
def __init__(self, learning_rate, last_epoch=-1, verbose=False):
|
|
super().__init__(learning_rate, last_epoch, verbose)
|
|
|
|
def get_lr(self):
|
|
return self.base_lr
|
|
|
|
|
|
def dynamic_import_scheduler(module):
|
|
"""Import Scheduler class dynamically.
|
|
|
|
Args:
|
|
module (str): module_name:class_name or alias in `SCHEDULER_DICT`
|
|
|
|
Returns:
|
|
type: Scheduler class
|
|
|
|
"""
|
|
module_class = dynamic_import(module, SCHEDULER_DICT)
|
|
assert issubclass(module_class,
|
|
LRScheduler), f"{module} does not implement LRScheduler"
|
|
return module_class
|
|
|
|
|
|
class LRSchedulerFactory():
|
|
@classmethod
|
|
def from_args(cls, name: str, args: Dict[Text, Any]):
|
|
module_class = dynamic_import_scheduler(name.lower())
|
|
return instance_class(module_class, args)
|