艾梦
ea9ee93739
|
2 years ago | |
---|---|---|
.. | ||
conf | 3 years ago | |
local | 3 years ago | |
README.md | 3 years ago | |
path.sh | 3 years ago | |
run.sh | 2 years ago |
README.md
VITS with CSMSC
This example contains code used to train a VITS model with Chinese Standard Mandarin Speech Copus.
Dataset
Download and Extract
Download CSMSC from it's Official Website.
Get MFA Result and Extract
We use MFA to get phonemes for VITS, the durations of MFA are not needed here. You can download from here baker_alignment_tone.tar.gz, or train your MFA model reference to mfa example of our repo.
Get Started
Assume the path to the dataset is ~/datasets/BZNSYP
.
Assume the path to the MFA result of CSMSC is ./baker_alignment_tone
.
Run the command below to
- source path.
- preprocess the dataset.
- train the model.
- synthesize wavs.
- synthesize waveform from
metadata.jsonl
. - synthesize waveform from a text file.
- synthesize waveform from
./run.sh
You can choose a range of stages you want to run, or set stage
equal to stop-stage
to use only one stage, for example, running the following command will only preprocess the dataset.
./run.sh --stage 0 --stop-stage 0
Data Preprocessing
./local/preprocess.sh ${conf_path}
When it is done. A dump
folder is created in the current directory. The structure of the dump folder is listed below.
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── feats_stats.npy
├── norm
└── raw
The dataset is split into 3 parts, namely train
, dev
, and test
, each of which contains a norm
and raw
subfolder. The raw folder contains wave and linear spectrogram of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in dump/train/feats_stats.npy
.
Also, there is a metadata.jsonl
in each subfolder. It is a table-like file that contains phones, text_lengths, feats, feats_lengths, the path of linear spectrogram features, the path of raw waves, speaker, and the id of each utterance.
Model Training
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
./local/train.sh
calls ${BIN_DIR}/train.py
.
Here's the complete help message.
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
[--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU] [--phones-dict PHONES_DICT]
Train a VITS model.
optional arguments:
-h, --help show this help message and exit
--config CONFIG config file to overwrite default config.
--train-metadata TRAIN_METADATA
training data.
--dev-metadata DEV_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
--phones-dict PHONES_DICT
phone vocabulary file.
--config
is a config file in yaml format to overwrite the default config, which can be found atconf/default.yaml
.--train-metadata
and--dev-metadata
should be the metadata file in the normalized subfolder oftrain
anddev
in thedump
folder.--output-dir
is the directory to save the results of the experiment. Checkpoints are saved incheckpoints/
inside this directory.--ngpu
is the number of gpus to use, if ngpu == 0, use cpu.--phones-dict
is the path of the phone vocabulary file.
Synthesizing
./local/synthesize.sh
calls ${BIN_DIR}/synthesize.py
, which can synthesize waveform from metadata.jsonl
.
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
usage: synthesize.py [-h] [--config CONFIG] [--ckpt CKPT]
[--phones_dict PHONES_DICT] [--ngpu NGPU]
[--test_metadata TEST_METADATA] [--output_dir OUTPUT_DIR]
Synthesize with VITS
optional arguments:
-h, --help show this help message and exit
--config CONFIG Config of VITS.
--ckpt CKPT Checkpoint file of VITS.
--phones_dict PHONES_DICT
phone vocabulary file.
--ngpu NGPU if ngpu == 0, use cpu.
--test_metadata TEST_METADATA
test metadata.
--output_dir OUTPUT_DIR
output dir.
./local/synthesize_e2e.sh
calls ${BIN_DIR}/synthesize_e2e.py
, which can synthesize waveform from text file.
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name}
usage: synthesize_e2e.py [-h] [--config CONFIG] [--ckpt CKPT]
[--phones_dict PHONES_DICT] [--lang LANG]
[--inference_dir INFERENCE_DIR] [--ngpu NGPU]
[--text TEXT] [--output_dir OUTPUT_DIR]
Synthesize with VITS
optional arguments:
-h, --help show this help message and exit
--config CONFIG Config of VITS.
--ckpt CKPT Checkpoint file of VITS.
--phones_dict PHONES_DICT
phone vocabulary file.
--lang LANG Choose model language. zh or en
--inference_dir INFERENCE_DIR
dir to save inference models
--ngpu NGPU if ngpu == 0, use cpu.
--text TEXT text to synthesize, a 'utt_id sentence' pair per line.
--output_dir OUTPUT_DIR
output dir.
--config
,--ckpt
, and--phones_dict
are arguments for acoustic model, which correspond to the 3 files in the VITS pretrained model.--lang
is the model language, which can bezh
oren
.--test_metadata
should be the metadata file in the normalized subfolder oftest
in thedump
folder.--text
is the text file, which contains sentences to synthesize.--output_dir
is the directory to save synthesized audio files.--ngpu
is the number of gpus to use, if ngpu == 0, use cpu.
Pretrained Model
The pretrained model can be downloaded here:
- vits_csmsc_ckpt_1.1.0.zip (add_blank=true)
VITS checkpoint contains files listed below.
vits_csmsc_ckpt_1.1.0
├── default.yaml # default config used to train vitx
├── phone_id_map.txt # phone vocabulary file when training vits
└── snapshot_iter_333000.pdz # model parameters and optimizer states
ps: This ckpt is not good enough, a better result is training
You can use the following scripts to synthesize for ${BIN_DIR}/../sentences.txt
using pretrained VITS.
source path.sh
add_blank=true
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \
--config=vits_csmsc_ckpt_1.1.0/default.yaml \
--ckpt=vits_csmsc_ckpt_1.1.0/snapshot_iter_333000.pdz \
--phones_dict=vits_csmsc_ckpt_1.1.0/phone_id_map.txt \
--output_dir=exp/default/test_e2e \
--text=${BIN_DIR}/../sentences.txt \
--add-blank=${add_blank}