You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/starganv2_vc/transforms.py

144 lines
4.0 KiB

# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import numpy as np
import paddle
import paddle.nn.functional as F
from paddle import nn
## 1. RandomTimeStrech
class TimeStrech(nn.Layer):
def __init__(self, scale):
super().__init__()
self.scale = scale
def forward(self, x: paddle.Tensor):
mel_size = x.shape[-1]
x = F.interpolate(
x,
scale_factor=(1, self.scale),
align_corners=False,
mode='bilinear').squeeze()
if x.shape[-1] < mel_size:
noise_length = (mel_size - x.shape[-1])
random_pos = random.randint(0, x.shape[-1]) - noise_length
if random_pos < 0:
random_pos = 0
noise = x[..., random_pos:random_pos + noise_length]
x = paddle.concat([x, noise], axis=-1)
else:
x = x[..., :mel_size]
return x.unsqueeze(1)
## 2. PitchShift
class PitchShift(nn.Layer):
def __init__(self, shift):
super().__init__()
self.shift = shift
def forward(self, x: paddle.Tensor):
if len(x.shape) == 2:
x = x.unsqueeze(0)
x = x.squeeze()
mel_size = x.shape[1]
shift_scale = (mel_size + self.shift) / mel_size
x = F.interpolate(
x.unsqueeze(1),
scale_factor=(shift_scale, 1.),
align_corners=False,
mode='bilinear').squeeze(1)
x = x[:, :mel_size]
if x.shape[1] < mel_size:
pad_size = mel_size - x.shape[1]
x = paddle.cat(
[x, paddle.zeros(x.shape[0], pad_size, x.shape[2])], axis=1)
x = x.squeeze()
return x.unsqueeze(1)
## 3. ShiftBias
class ShiftBias(nn.Layer):
def __init__(self, bias):
super().__init__()
self.bias = bias
def forward(self, x: paddle.Tensor):
return x + self.bias
## 4. Scaling
class SpectScaling(nn.Layer):
def __init__(self, scale):
super().__init__()
self.scale = scale
def forward(self, x: paddle.Tensor):
return x * self.scale
## 5. Time Flip
class TimeFlip(nn.Layer):
def __init__(self, length):
super().__init__()
self.length = round(length)
def forward(self, x: paddle.Tensor):
if self.length > 1:
start = np.random.randint(0, x.shape[-1] - self.length)
x_ret = x.clone()
x_ret[..., start:start + self.length] = paddle.flip(
x[..., start:start + self.length], axis=[-1])
x = x_ret
return x
class PhaseShuffle2D(nn.Layer):
def __init__(self, n: int=2):
super().__init__()
self.n = n
self.random = random.Random(1)
def forward(self, x: paddle.Tensor, move=None):
# x.size = (B, C, M, L)
if move is None:
move = self.random.randint(-self.n, self.n)
if move == 0:
return x
else:
left = x[:, :, :, :move]
right = x[:, :, :, move:]
shuffled = paddle.concat([right, left], axis=3)
return shuffled
def build_transforms():
transforms = [
lambda M: TimeStrech(1 + (np.random.random() - 0.5) * M * 0.2),
lambda M: SpectScaling(1 + (np.random.random() - 1) * M * 0.1),
lambda M: PhaseShuffle2D(192),
]
N, M = len(transforms), np.random.random()
composed = nn.Sequential(
* [trans(M) for trans in np.random.choice(transforms, N)])
return composed