You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/modules/attention.py

325 lines
15 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from wenet(https://github.com/wenet-e2e/wenet)
"""Multi-Head Attention layer definition."""
import math
from typing import Optional
from typing import Tuple
import paddle
from paddle import nn
from paddle.nn import initializer as I
from paddlespeech.s2t.modules.align import Linear
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
__all__ = ["MultiHeadedAttention", "RelPositionMultiHeadedAttention"]
# Relative Positional Encodings
# https://www.jianshu.com/p/c0608efcc26f
# https://zhuanlan.zhihu.com/p/344604604
class MultiHeadedAttention(nn.Layer):
"""Multi-Head Attention layer."""
def __init__(self, n_head: int, n_feat: int, dropout_rate: float):
"""Construct an MultiHeadedAttention object.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
super().__init__()
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = Linear(n_feat, n_feat)
self.linear_k = Linear(n_feat, n_feat)
self.linear_v = Linear(n_feat, n_feat)
self.linear_out = Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self,
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Transform query, key and value.
Args:
query (paddle.Tensor): Query tensor (#batch, time1, size).
key (paddle.Tensor): Key tensor (#batch, time2, size).
value (paddle.Tensor): Value tensor (#batch, time2, size).
Returns:
paddle.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
paddle.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
paddle.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.shape[0]
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k)
k = k.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k)
v = v.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k)
return q, k, v
def forward_attention(self,
value: paddle.Tensor,
scores: paddle.Tensor,
mask: paddle.Tensor = paddle.ones([0, 0, 0], dtype=paddle.bool),
) -> paddle.Tensor:
"""Compute attention context vector.
Args:
value (paddle.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (paddle.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (paddle.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
Returns:
paddle.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.shape[0]
# When `if mask.size(2) > 0` be True:
# 1. training.
# 2. oonx(16/4, chunk_size/history_size), feed real cache and real mask for the 1st chunk.
# When will `if mask.size(2) > 0` be False?
# 1. onnx(16/-1, -1/-1, 16/0)
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
if paddle.shape(mask)[2] > 0: # time2 > 0
mask = mask.unsqueeze(1).equal(0) # (batch, 1, *, time2)
# for last chunk, time2 might be larger than scores.size(-1)
mask = mask[:, :, :, :paddle.shape(scores)[-1]]
scores = scores.masked_fill(mask, -float('inf'))
attn = paddle.softmax(
scores, axis=-1).masked_fill(mask,
0.0) # (batch, head, time1, time2)
else:
attn = paddle.softmax(
scores, axis=-1) # (batch, head, time1, time2)
p_attn = self.dropout(attn)
x = paddle.matmul(p_attn, value) # (batch, head, time1, d_k)
x = x.transpose([0, 2, 1, 3]).view(n_batch, -1, self.h *
self.d_k) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def forward(self,
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor,
mask: paddle.Tensor = paddle.ones([0,0,0], dtype=paddle.bool),
pos_emb: paddle.Tensor = paddle.empty([0]),
cache: paddle.Tensor = paddle.zeros([0,0,0,0])
) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Compute scaled dot product attention.
Args:
query (paddle.Tensor): Query tensor (#batch, time1, size).
key (paddle.Tensor): Key tensor (#batch, time2, size).
value (paddle.Tensor): Value tensor (#batch, time2, size).
mask (paddle.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
1.When applying cross attention between decoder and encoder,
the batch padding mask for input is in (#batch, 1, T) shape.
2.When applying self attention of encoder,
the mask is in (#batch, T, T) shape.
3.When applying self attention of decoder,
the mask is in (#batch, L, L) shape.
4.If the different position in decoder see different block
of the encoder, such as Mocha, the passed in mask could be
in (#batch, L, T) shape. But there is no such case in current
Wenet.
cache (paddle.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
paddle.Tensor: Output tensor (#batch, time1, d_model).
paddle.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if paddle.shape(cache)[0] > 0:
# last dim `d_k * 2` for (key, val)
key_cache, value_cache = paddle.split(cache, 2, axis=-1)
k = paddle.concat([key_cache, k], axis=2)
v = paddle.concat([value_cache, v], axis=2)
# We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = paddle.concat((k, v), axis=-1)
scores = paddle.matmul(q,
k.transpose([0, 1, 3, 2])) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask), new_cache
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding."""
def __init__(self, n_head, n_feat, dropout_rate):
"""Construct an RelPositionMultiHeadedAttention object.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
super().__init__(n_head, n_feat, dropout_rate)
# linear transformation for positional encoding
self.linear_pos = Linear(n_feat, n_feat, bias_attr=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
#self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
#self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
#torch.nn.init.xavier_uniform_(self.pos_bias_u)
#torch.nn.init.xavier_uniform_(self.pos_bias_v)
pos_bias_u = self.create_parameter(
[self.h, self.d_k], default_initializer=I.XavierUniform())
self.add_parameter('pos_bias_u', pos_bias_u)
pos_bias_v = self.create_parameter(
(self.h, self.d_k), default_initializer=I.XavierUniform())
self.add_parameter('pos_bias_v', pos_bias_v)
def rel_shift(self, x, zero_triu: bool=False):
"""Compute relative positinal encoding.
Args:
x (paddle.Tensor): Input tensor (batch, head, time1, time1).
zero_triu (bool): If true, return the lower triangular part of
the matrix.
Returns:
paddle.Tensor: Output tensor. (batch, head, time1, time1)
"""
zero_pad = paddle.zeros(
(x.shape[0], x.shape[1], x.shape[2], 1), dtype=x.dtype)
x_padded = paddle.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.shape[0], x.shape[1], x.shape[3] + 1,
x.shape[2])
x = x_padded[:, :, 1:].view_as(x) # [B, H, T1, T1]
if zero_triu:
ones = paddle.ones((x.shape[2], x.shape[3]))
x = x * paddle.tril(ones, x.shape[3] - x.shape[2])[None, None, :, :]
return x
def forward(self,
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor,
mask: paddle.Tensor = paddle.ones([0,0,0], dtype=paddle.bool),
pos_emb: paddle.Tensor = paddle.empty([0]),
cache: paddle.Tensor = paddle.zeros([0,0,0,0])
) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (paddle.Tensor): Query tensor (#batch, time1, size).
key (paddle.Tensor): Key tensor (#batch, time2, size).
value (paddle.Tensor): Value tensor (#batch, time2, size).
mask (paddle.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2), (0, 0, 0) means fake mask.
pos_emb (paddle.Tensor): Positional embedding tensor
(#batch, time2, size).
cache (paddle.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
paddle.Tensor: Output tensor (#batch, time1, d_model).
paddle.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose([0, 2, 1, 3]) # (batch, time1, head, d_k)
# when export onnx model, for 1st chunk, we feed
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
# and we will always do splitting and
# concatnation(this will simplify onnx export). Note that
# it's OK to concat & split zero-shaped tensors(see code below).
# when export jit model, for 1st chunk, we always feed
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
# >>> a = torch.ones((1, 2, 0, 4))
# >>> b = torch.ones((1, 2, 3, 4))
# >>> c = torch.cat((a, b), dim=2)
# >>> torch.equal(b, c) # True
# >>> d = torch.split(a, 2, dim=-1)
# >>> torch.equal(d[0], d[1]) # True
if paddle.shape(cache)[0] > 0:
# last dim `d_k * 2` for (key, val)
key_cache, value_cache = paddle.split(cache, 2, axis=-1)
k = paddle.concat([key_cache, k], axis=2)
v = paddle.concat([value_cache, v], axis=2)
# We do cache slicing in encoder.forward_chunk, since it's
# non-trivial to calculate `next_cache_start` here.
new_cache = paddle.concat((k, v), axis=-1)
n_batch_pos = pos_emb.shape[0]
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose([0, 2, 1, 3])
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose([0, 2, 1, 3])
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = paddle.matmul(q_with_bias_u, k.transpose([0, 1, 3, 2]))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = paddle.matmul(q_with_bias_v, p.transpose([0, 1, 3, 2]))
# Remove rel_shift since it is useless in speech recognition,
# and it requires special attention for streaming.
# matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(
self.d_k) # (batch, head, time1, time2)
return self.forward_attention(v, scores, mask), new_cache