You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/starganv2_vc/AuxiliaryASR/model.py

240 lines
9.1 KiB

# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import paddle.nn.functional as F
from paddle import nn
from .layers import Attention
from .layers import ConvBlock
from .layers import ConvNorm
from .layers import LinearNorm
from .layers import MFCC
from paddlespeech.utils.initialize import uniform_
class ASRCNN(nn.Layer):
def __init__(
self,
input_dim: int=80,
hidden_dim: int=256,
n_token: int=35,
n_layers: int=6,
token_embedding_dim: int=256, ):
super().__init__()
self.n_token = n_token
self.n_down = 1
self.to_mfcc = MFCC()
self.init_cnn = ConvNorm(
in_channels=input_dim // 2,
out_channels=hidden_dim,
kernel_size=7,
padding=3,
stride=2)
self.cnns = nn.Sequential(* [
nn.Sequential(
ConvBlock(hidden_dim),
nn.GroupNorm(num_groups=1, num_channels=hidden_dim))
for n in range(n_layers)
])
self.projection = ConvNorm(
in_channels=hidden_dim, out_channels=hidden_dim // 2)
self.ctc_linear = nn.Sequential(
LinearNorm(in_dim=hidden_dim // 2, out_dim=hidden_dim),
nn.ReLU(), LinearNorm(in_dim=hidden_dim, out_dim=n_token))
self.asr_s2s = ASRS2S(
embedding_dim=token_embedding_dim,
hidden_dim=hidden_dim // 2,
n_token=n_token)
def forward(self,
x: paddle.Tensor,
src_key_padding_mask: paddle.Tensor=None,
text_input: paddle.Tensor=None):
x = self.to_mfcc(x)
x = self.init_cnn(x)
x = self.cnns(x)
x = self.projection(x)
x = x.transpose([0, 2, 1])
ctc_logit = self.ctc_linear(x)
if text_input is not None:
_, s2s_logit, s2s_attn = self.asr_s2s(
memory=x,
memory_mask=src_key_padding_mask,
text_input=text_input)
return ctc_logit, s2s_logit, s2s_attn
else:
return ctc_logit
def get_feature(self, x: paddle.Tensor):
x = self.to_mfcc(x.squeeze(1))
x = self.init_cnn(x)
x = self.cnns(x)
x = self.projection(x)
return x
def length_to_mask(self, lengths: paddle.Tensor):
mask = paddle.arange(lengths.max()).unsqueeze(0).expand(
(lengths.shape[0], -1)).astype(lengths.dtype)
mask = paddle.greater_than(mask + 1, lengths.unsqueeze(1))
return mask
def get_future_mask(self, out_length: int, unmask_future_steps: int=0):
"""
Args:
out_length (int):
returned mask shape is (out_length, out_length).
unmask_futre_steps (int):
unmasking future step size.
Return:
mask (paddle.BoolTensor):
mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
"""
index_tensor = paddle.arange(out_length).unsqueeze(0).expand(
[out_length, -1])
mask = paddle.greater_than(index_tensor,
index_tensor.T + unmask_future_steps)
return mask
class ASRS2S(nn.Layer):
def __init__(self,
embedding_dim: int=256,
hidden_dim: int=512,
n_location_filters: int=32,
location_kernel_size: int=63,
n_token: int=40):
super().__init__()
self.embedding = nn.Embedding(n_token, embedding_dim)
val_range = math.sqrt(6 / hidden_dim)
uniform_(self.embedding.weight, -val_range, val_range)
self.decoder_rnn_dim = hidden_dim
self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
self.attention_layer = Attention(
attention_rnn_dim=self.decoder_rnn_dim,
embedding_dim=hidden_dim,
attention_dim=hidden_dim,
attention_location_n_filters=n_location_filters,
attention_location_kernel_size=location_kernel_size)
self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim,
self.decoder_rnn_dim)
self.project_to_hidden = nn.Sequential(
LinearNorm(in_dim=self.decoder_rnn_dim * 2, out_dim=hidden_dim),
nn.Tanh())
self.sos = 1
self.eos = 2
def initialize_decoder_states(self,
memory: paddle.Tensor,
mask: paddle.Tensor):
"""
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
"""
B, L, H = memory.shape
dtype = memory.dtype
self.decoder_hidden = paddle.zeros(
(B, self.decoder_rnn_dim)).astype(dtype)
self.decoder_cell = paddle.zeros(
(B, self.decoder_rnn_dim)).astype(dtype)
self.attention_weights = paddle.zeros((B, L)).astype(dtype)
self.attention_weights_cum = paddle.zeros((B, L)).astype(dtype)
self.attention_context = paddle.zeros((B, H)).astype(dtype)
self.memory = memory
self.processed_memory = self.attention_layer.memory_layer(memory)
self.mask = mask
self.unk_index = 3
self.random_mask = 0.1
def forward(self,
memory: paddle.Tensor,
memory_mask: paddle.Tensor,
text_input: paddle.Tensor):
"""
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
moemory_mask.shape = (B, L, )
texts_input.shape = (B, T)
"""
self.initialize_decoder_states(memory, memory_mask)
# text random mask
random_mask = (paddle.rand(text_input.shape) < self.random_mask)
_text_input = text_input.clone()
_text_input[:] = paddle.where(
condition=random_mask,
x=paddle.full(
shape=_text_input.shape,
fill_value=self.unk_index,
dtype=_text_input.dtype),
y=_text_input)
decoder_inputs = self.embedding(_text_input).transpose(
[1, 0, 2]) # -> [T, B, channel]
start_embedding = self.embedding(
paddle.to_tensor(
[self.sos] * decoder_inputs.shape[1], dtype=paddle.long))
decoder_inputs = paddle.concat(
(start_embedding.unsqueeze(0), decoder_inputs), axis=0)
hidden_outputs, logit_outputs, alignments = [], [], []
while len(hidden_outputs) < decoder_inputs.shape[0]:
decoder_input = decoder_inputs[len(hidden_outputs)]
hidden, logit, attention_weights = self.decode(decoder_input)
hidden_outputs += [hidden]
logit_outputs += [logit]
alignments += [attention_weights]
hidden_outputs, logit_outputs, alignments = \
self.parse_decoder_outputs(
hidden_outputs, logit_outputs, alignments)
return hidden_outputs, logit_outputs, alignments
def decode(self, decoder_input: paddle.Tensor):
cell_input = paddle.concat((decoder_input, self.attention_context), -1)
self.decoder_rnn.flatten_parameters()
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
cell_input, (self.decoder_hidden, self.decoder_cell))
attention_weights_cat = paddle.concat(
(self.attention_weights.unsqueeze(1),
self.attention_weights_cum.unsqueeze(1)),
axis=1)
self.attention_context, self.attention_weights = self.attention_layer(
self.decoder_hidden, self.memory, self.processed_memory,
attention_weights_cat, self.mask)
self.attention_weights_cum += self.attention_weights
hidden_and_context = paddle.concat(
(self.decoder_hidden, self.attention_context), -1)
hidden = self.project_to_hidden(hidden_and_context)
# dropout to increasing g
logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
return hidden, logit, self.attention_weights
def parse_decoder_outputs(self,
hidden: paddle.Tensor,
logit: paddle.Tensor,
alignments: paddle.Tensor):
# -> [B, T_out + 1, max_time]
alignments = paddle.stack(alignments).transpose([1, 0, 2])
# [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
logit = paddle.stack(logit).transpose([1, 0, 2])
hidden = paddle.stack(hidden).transpose([1, 0, 2])
return hidden, logit, alignments