You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1219 lines
49 KiB
1219 lines
49 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
"""Fastspeech2 related modules for paddle"""
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Sequence
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn.functional as F
|
|
from paddle import nn
|
|
from typeguard import check_argument_types
|
|
|
|
from paddlespeech.t2s.modules.adversarial_loss.gradient_reversal import GradientReversalLayer
|
|
from paddlespeech.t2s.modules.adversarial_loss.speaker_classifier import SpeakerClassifier
|
|
from paddlespeech.t2s.modules.nets_utils import initialize
|
|
from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask
|
|
from paddlespeech.t2s.modules.nets_utils import make_pad_mask
|
|
from paddlespeech.t2s.modules.predictor.duration_predictor import DurationPredictor
|
|
from paddlespeech.t2s.modules.predictor.duration_predictor import DurationPredictorLoss
|
|
from paddlespeech.t2s.modules.predictor.length_regulator import LengthRegulator
|
|
from paddlespeech.t2s.modules.predictor.variance_predictor import VariancePredictor
|
|
from paddlespeech.t2s.modules.tacotron2.decoder import Postnet
|
|
from paddlespeech.t2s.modules.transformer.encoder import CNNDecoder
|
|
from paddlespeech.t2s.modules.transformer.encoder import CNNPostnet
|
|
from paddlespeech.t2s.modules.transformer.encoder import ConformerEncoder
|
|
from paddlespeech.t2s.modules.transformer.encoder import TransformerEncoder
|
|
|
|
|
|
class FastSpeech2(nn.Layer):
|
|
"""FastSpeech2 module.
|
|
|
|
This is a module of FastSpeech2 described in `FastSpeech 2: Fast and
|
|
High-Quality End-to-End Text to Speech`_. Instead of quantized pitch and
|
|
energy, we use token-averaged value introduced in `FastPitch: Parallel
|
|
Text-to-speech with Pitch Prediction`_.
|
|
|
|
.. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`:
|
|
https://arxiv.org/abs/2006.04558
|
|
.. _`FastPitch: Parallel Text-to-speech with Pitch Prediction`:
|
|
https://arxiv.org/abs/2006.06873
|
|
|
|
Args:
|
|
|
|
Returns:
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
# network structure related
|
|
idim: int,
|
|
odim: int,
|
|
adim: int=384,
|
|
aheads: int=4,
|
|
elayers: int=6,
|
|
eunits: int=1536,
|
|
dlayers: int=6,
|
|
dunits: int=1536,
|
|
postnet_layers: int=5,
|
|
postnet_chans: int=512,
|
|
postnet_filts: int=5,
|
|
postnet_dropout_rate: float=0.5,
|
|
positionwise_layer_type: str="conv1d",
|
|
positionwise_conv_kernel_size: int=1,
|
|
use_scaled_pos_enc: bool=True,
|
|
use_batch_norm: bool=True,
|
|
encoder_normalize_before: bool=True,
|
|
decoder_normalize_before: bool=True,
|
|
encoder_concat_after: bool=False,
|
|
decoder_concat_after: bool=False,
|
|
reduction_factor: int=1,
|
|
encoder_type: str="transformer",
|
|
decoder_type: str="transformer",
|
|
# for transformer
|
|
transformer_enc_dropout_rate: float=0.1,
|
|
transformer_enc_positional_dropout_rate: float=0.1,
|
|
transformer_enc_attn_dropout_rate: float=0.1,
|
|
transformer_dec_dropout_rate: float=0.1,
|
|
transformer_dec_positional_dropout_rate: float=0.1,
|
|
transformer_dec_attn_dropout_rate: float=0.1,
|
|
transformer_activation_type: str="relu",
|
|
# for conformer
|
|
conformer_pos_enc_layer_type: str="rel_pos",
|
|
conformer_self_attn_layer_type: str="rel_selfattn",
|
|
conformer_activation_type: str="swish",
|
|
use_macaron_style_in_conformer: bool=True,
|
|
use_cnn_in_conformer: bool=True,
|
|
zero_triu: bool=False,
|
|
conformer_enc_kernel_size: int=7,
|
|
conformer_dec_kernel_size: int=31,
|
|
# for CNN Decoder
|
|
cnn_dec_dropout_rate: float=0.2,
|
|
cnn_postnet_dropout_rate: float=0.2,
|
|
cnn_postnet_resblock_kernel_sizes: List[int]=[256, 256],
|
|
cnn_postnet_kernel_size: int=5,
|
|
cnn_decoder_embedding_dim: int=256,
|
|
# duration predictor
|
|
duration_predictor_layers: int=2,
|
|
duration_predictor_chans: int=384,
|
|
duration_predictor_kernel_size: int=3,
|
|
duration_predictor_dropout_rate: float=0.1,
|
|
# energy predictor
|
|
energy_predictor_layers: int=2,
|
|
energy_predictor_chans: int=384,
|
|
energy_predictor_kernel_size: int=3,
|
|
energy_predictor_dropout: float=0.5,
|
|
energy_embed_kernel_size: int=9,
|
|
energy_embed_dropout: float=0.5,
|
|
stop_gradient_from_energy_predictor: bool=False,
|
|
# pitch predictor
|
|
pitch_predictor_layers: int=2,
|
|
pitch_predictor_chans: int=384,
|
|
pitch_predictor_kernel_size: int=3,
|
|
pitch_predictor_dropout: float=0.5,
|
|
pitch_embed_kernel_size: int=9,
|
|
pitch_embed_dropout: float=0.5,
|
|
stop_gradient_from_pitch_predictor: bool=False,
|
|
# spk emb
|
|
spk_num: int=None,
|
|
spk_embed_dim: int=None,
|
|
spk_embed_integration_type: str="add",
|
|
# tone emb
|
|
tone_num: int=None,
|
|
tone_embed_dim: int=None,
|
|
tone_embed_integration_type: str="add",
|
|
# training related
|
|
init_type: str="xavier_uniform",
|
|
init_enc_alpha: float=1.0,
|
|
init_dec_alpha: float=1.0,
|
|
# speaker classifier
|
|
enable_speaker_classifier: bool=False,
|
|
hidden_sc_dim: int=256, ):
|
|
"""Initialize FastSpeech2 module.
|
|
Args:
|
|
idim (int):
|
|
Dimension of the inputs.
|
|
odim (int):
|
|
Dimension of the outputs.
|
|
adim (int):
|
|
Attention dimension.
|
|
aheads (int):
|
|
Number of attention heads.
|
|
elayers (int):
|
|
Number of encoder layers.
|
|
eunits (int):
|
|
Number of encoder hidden units.
|
|
dlayers (int):
|
|
Number of decoder layers.
|
|
dunits (int):
|
|
Number of decoder hidden units.
|
|
postnet_layers (int):
|
|
Number of postnet layers.
|
|
postnet_chans (int):
|
|
Number of postnet channels.
|
|
postnet_filts (int):
|
|
Kernel size of postnet.
|
|
postnet_dropout_rate (float):
|
|
Dropout rate in postnet.
|
|
use_scaled_pos_enc (bool):
|
|
Whether to use trainable scaled pos encoding.
|
|
use_batch_norm (bool):
|
|
Whether to use batch normalization in encoder prenet.
|
|
encoder_normalize_before (bool):
|
|
Whether to apply layernorm layer before encoder block.
|
|
decoder_normalize_before (bool):
|
|
Whether to apply layernorm layer before decoder block.
|
|
encoder_concat_after (bool):
|
|
Whether to concatenate attention layer's input and output in encoder.
|
|
decoder_concat_after (bool):
|
|
Whether to concatenate attention layer's input and output in decoder.
|
|
reduction_factor (int):
|
|
Reduction factor.
|
|
encoder_type (str):
|
|
Encoder type ("transformer" or "conformer").
|
|
decoder_type (str):
|
|
Decoder type ("transformer" or "conformer").
|
|
transformer_enc_dropout_rate (float):
|
|
Dropout rate in encoder except attention and positional encoding.
|
|
transformer_enc_positional_dropout_rate (float):
|
|
Dropout rate after encoder positional encoding.
|
|
transformer_enc_attn_dropout_rate (float):
|
|
Dropout rate in encoder self-attention module.
|
|
transformer_dec_dropout_rate (float):
|
|
Dropout rate in decoder except attention & positional encoding.
|
|
transformer_dec_positional_dropout_rate (float):
|
|
Dropout rate after decoder positional encoding.
|
|
transformer_dec_attn_dropout_rate (float):
|
|
Dropout rate in decoder self-attention module.
|
|
transformer_activation_type (str):
|
|
Activation function type in transformer.
|
|
conformer_pos_enc_layer_type (str):
|
|
Pos encoding layer type in conformer.
|
|
conformer_self_attn_layer_type (str):
|
|
Self-attention layer type in conformer
|
|
conformer_activation_type (str):
|
|
Activation function type in conformer.
|
|
use_macaron_style_in_conformer (bool):
|
|
Whether to use macaron style FFN.
|
|
use_cnn_in_conformer (bool):
|
|
Whether to use CNN in conformer.
|
|
zero_triu (bool):
|
|
Whether to use zero triu in relative self-attention module.
|
|
conformer_enc_kernel_size (int):
|
|
Kernel size of encoder conformer.
|
|
conformer_dec_kernel_size (int):
|
|
Kernel size of decoder conformer.
|
|
duration_predictor_layers (int):
|
|
Number of duration predictor layers.
|
|
duration_predictor_chans (int):
|
|
Number of duration predictor channels.
|
|
duration_predictor_kernel_size (int):
|
|
Kernel size of duration predictor.
|
|
duration_predictor_dropout_rate (float):
|
|
Dropout rate in duration predictor.
|
|
pitch_predictor_layers (int):
|
|
Number of pitch predictor layers.
|
|
pitch_predictor_chans (int):
|
|
Number of pitch predictor channels.
|
|
pitch_predictor_kernel_size (int):
|
|
Kernel size of pitch predictor.
|
|
pitch_predictor_dropout_rate (float):
|
|
Dropout rate in pitch predictor.
|
|
pitch_embed_kernel_size (float):
|
|
Kernel size of pitch embedding.
|
|
pitch_embed_dropout_rate (float):
|
|
Dropout rate for pitch embedding.
|
|
stop_gradient_from_pitch_predictor (bool):
|
|
Whether to stop gradient from pitch predictor to encoder.
|
|
energy_predictor_layers (int):
|
|
Number of energy predictor layers.
|
|
energy_predictor_chans (int):
|
|
Number of energy predictor channels.
|
|
energy_predictor_kernel_size (int):
|
|
Kernel size of energy predictor.
|
|
energy_predictor_dropout_rate (float):
|
|
Dropout rate in energy predictor.
|
|
energy_embed_kernel_size (float):
|
|
Kernel size of energy embedding.
|
|
energy_embed_dropout_rate (float):
|
|
Dropout rate for energy embedding.
|
|
stop_gradient_from_energy_predictor (bool):
|
|
Whether to stop gradient from energy predictor to encoder.
|
|
spk_num (Optional[int]):
|
|
Number of speakers. If not None, assume that the spk_embed_dim is not None,
|
|
spk_ids will be provided as the input and use spk_embedding_table.
|
|
spk_embed_dim (Optional[int]):
|
|
Speaker embedding dimension. If not None,
|
|
assume that spk_emb will be provided as the input or spk_num is not None.
|
|
spk_embed_integration_type (str):
|
|
How to integrate speaker embedding.
|
|
tone_num (Optional[int]):
|
|
Number of tones. If not None, assume that the
|
|
tone_ids will be provided as the input and use tone_embedding_table.
|
|
tone_embed_dim (Optional[int]):
|
|
Tone embedding dimension. If not None, assume that tone_num is not None.
|
|
tone_embed_integration_type (str):
|
|
How to integrate tone embedding.
|
|
init_type (str):
|
|
How to initialize transformer parameters.
|
|
init_enc_alpha (float):
|
|
Initial value of alpha in scaled pos encoding of the encoder.
|
|
init_dec_alpha (float):
|
|
Initial value of alpha in scaled pos encoding of the decoder.
|
|
enable_speaker_classifier (bool):
|
|
Whether to use speaker classifier module
|
|
hidden_sc_dim (int):
|
|
The hidden layer dim of speaker classifier
|
|
|
|
"""
|
|
assert check_argument_types()
|
|
super().__init__()
|
|
|
|
# store hyperparameters
|
|
self.odim = odim
|
|
self.reduction_factor = reduction_factor
|
|
self.encoder_type = encoder_type
|
|
self.decoder_type = decoder_type
|
|
self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor
|
|
self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor
|
|
self.use_scaled_pos_enc = use_scaled_pos_enc
|
|
self.hidden_sc_dim = hidden_sc_dim
|
|
self.spk_num = spk_num
|
|
self.enable_speaker_classifier = enable_speaker_classifier
|
|
|
|
self.spk_embed_dim = spk_embed_dim
|
|
if self.spk_embed_dim is not None:
|
|
self.spk_embed_integration_type = spk_embed_integration_type
|
|
|
|
self.tone_embed_dim = tone_embed_dim
|
|
if self.tone_embed_dim is not None:
|
|
self.tone_embed_integration_type = tone_embed_integration_type
|
|
|
|
# use idx 0 as padding idx
|
|
self.padding_idx = 0
|
|
|
|
# initialize parameters
|
|
initialize(self, init_type)
|
|
|
|
if spk_num and self.spk_embed_dim:
|
|
self.spk_embedding_table = nn.Embedding(
|
|
num_embeddings=spk_num,
|
|
embedding_dim=self.spk_embed_dim,
|
|
padding_idx=self.padding_idx)
|
|
|
|
if self.tone_embed_dim is not None:
|
|
self.tone_embedding_table = nn.Embedding(
|
|
num_embeddings=tone_num,
|
|
embedding_dim=self.tone_embed_dim,
|
|
padding_idx=self.padding_idx)
|
|
|
|
# get positional encoding layer type
|
|
transformer_pos_enc_layer_type = "scaled_abs_pos" if self.use_scaled_pos_enc else "abs_pos"
|
|
|
|
# define encoder
|
|
encoder_input_layer = nn.Embedding(
|
|
num_embeddings=idim,
|
|
embedding_dim=adim,
|
|
padding_idx=self.padding_idx)
|
|
|
|
if encoder_type == "transformer":
|
|
self.encoder = TransformerEncoder(
|
|
idim=idim,
|
|
attention_dim=adim,
|
|
attention_heads=aheads,
|
|
linear_units=eunits,
|
|
num_blocks=elayers,
|
|
input_layer=encoder_input_layer,
|
|
dropout_rate=transformer_enc_dropout_rate,
|
|
positional_dropout_rate=transformer_enc_positional_dropout_rate,
|
|
attention_dropout_rate=transformer_enc_attn_dropout_rate,
|
|
pos_enc_layer_type=transformer_pos_enc_layer_type,
|
|
normalize_before=encoder_normalize_before,
|
|
concat_after=encoder_concat_after,
|
|
positionwise_layer_type=positionwise_layer_type,
|
|
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
|
|
activation_type=transformer_activation_type)
|
|
elif encoder_type == "conformer":
|
|
self.encoder = ConformerEncoder(
|
|
idim=idim,
|
|
attention_dim=adim,
|
|
attention_heads=aheads,
|
|
linear_units=eunits,
|
|
num_blocks=elayers,
|
|
input_layer=encoder_input_layer,
|
|
dropout_rate=transformer_enc_dropout_rate,
|
|
positional_dropout_rate=transformer_enc_positional_dropout_rate,
|
|
attention_dropout_rate=transformer_enc_attn_dropout_rate,
|
|
normalize_before=encoder_normalize_before,
|
|
concat_after=encoder_concat_after,
|
|
positionwise_layer_type=positionwise_layer_type,
|
|
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
|
|
macaron_style=use_macaron_style_in_conformer,
|
|
pos_enc_layer_type=conformer_pos_enc_layer_type,
|
|
selfattention_layer_type=conformer_self_attn_layer_type,
|
|
activation_type=conformer_activation_type,
|
|
use_cnn_module=use_cnn_in_conformer,
|
|
cnn_module_kernel=conformer_enc_kernel_size,
|
|
zero_triu=zero_triu, )
|
|
else:
|
|
raise ValueError(f"{encoder_type} is not supported.")
|
|
|
|
# define additional projection for speaker embedding
|
|
if self.spk_embed_dim is not None:
|
|
if self.spk_embed_integration_type == "add":
|
|
self.spk_projection = nn.Linear(self.spk_embed_dim, adim)
|
|
else:
|
|
self.spk_projection = nn.Linear(adim + self.spk_embed_dim, adim)
|
|
|
|
# define additional projection for tone embedding
|
|
if self.tone_embed_dim is not None:
|
|
if self.tone_embed_integration_type == "add":
|
|
self.tone_projection = nn.Linear(self.tone_embed_dim, adim)
|
|
else:
|
|
self.tone_projection = nn.Linear(adim + self.tone_embed_dim,
|
|
adim)
|
|
|
|
if self.spk_num and self.enable_speaker_classifier:
|
|
# set lambda = 1
|
|
self.grad_reverse = GradientReversalLayer(1)
|
|
self.speaker_classifier = SpeakerClassifier(
|
|
idim=adim, hidden_sc_dim=self.hidden_sc_dim, spk_num=spk_num)
|
|
|
|
# define duration predictor
|
|
self.duration_predictor = DurationPredictor(
|
|
idim=adim,
|
|
n_layers=duration_predictor_layers,
|
|
n_chans=duration_predictor_chans,
|
|
kernel_size=duration_predictor_kernel_size,
|
|
dropout_rate=duration_predictor_dropout_rate, )
|
|
|
|
# define pitch predictor
|
|
self.pitch_predictor = VariancePredictor(
|
|
idim=adim,
|
|
n_layers=pitch_predictor_layers,
|
|
n_chans=pitch_predictor_chans,
|
|
kernel_size=pitch_predictor_kernel_size,
|
|
dropout_rate=pitch_predictor_dropout, )
|
|
# We use continuous pitch + FastPitch style avg
|
|
self.pitch_embed = nn.Sequential(
|
|
nn.Conv1D(
|
|
in_channels=1,
|
|
out_channels=adim,
|
|
kernel_size=pitch_embed_kernel_size,
|
|
padding=(pitch_embed_kernel_size - 1) // 2, ),
|
|
nn.Dropout(pitch_embed_dropout), )
|
|
|
|
# define energy predictor
|
|
self.energy_predictor = VariancePredictor(
|
|
idim=adim,
|
|
n_layers=energy_predictor_layers,
|
|
n_chans=energy_predictor_chans,
|
|
kernel_size=energy_predictor_kernel_size,
|
|
dropout_rate=energy_predictor_dropout, )
|
|
# We use continuous enegy + FastPitch style avg
|
|
self.energy_embed = nn.Sequential(
|
|
nn.Conv1D(
|
|
in_channels=1,
|
|
out_channels=adim,
|
|
kernel_size=energy_embed_kernel_size,
|
|
padding=(energy_embed_kernel_size - 1) // 2, ),
|
|
nn.Dropout(energy_embed_dropout), )
|
|
|
|
# define length regulator
|
|
self.length_regulator = LengthRegulator()
|
|
|
|
# define decoder
|
|
# NOTE: we use encoder as decoder
|
|
# because fastspeech's decoder is the same as encoder
|
|
if decoder_type == "transformer":
|
|
self.decoder = TransformerEncoder(
|
|
idim=0,
|
|
attention_dim=adim,
|
|
attention_heads=aheads,
|
|
linear_units=dunits,
|
|
num_blocks=dlayers,
|
|
# in decoder, don't need layer before pos_enc_class (we use embedding here in encoder)
|
|
input_layer=None,
|
|
dropout_rate=transformer_dec_dropout_rate,
|
|
positional_dropout_rate=transformer_dec_positional_dropout_rate,
|
|
attention_dropout_rate=transformer_dec_attn_dropout_rate,
|
|
pos_enc_layer_type=transformer_pos_enc_layer_type,
|
|
normalize_before=decoder_normalize_before,
|
|
concat_after=decoder_concat_after,
|
|
positionwise_layer_type=positionwise_layer_type,
|
|
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
|
|
activation_type=conformer_activation_type, )
|
|
elif decoder_type == "conformer":
|
|
self.decoder = ConformerEncoder(
|
|
idim=0,
|
|
attention_dim=adim,
|
|
attention_heads=aheads,
|
|
linear_units=dunits,
|
|
num_blocks=dlayers,
|
|
input_layer=None,
|
|
dropout_rate=transformer_dec_dropout_rate,
|
|
positional_dropout_rate=transformer_dec_positional_dropout_rate,
|
|
attention_dropout_rate=transformer_dec_attn_dropout_rate,
|
|
normalize_before=decoder_normalize_before,
|
|
concat_after=decoder_concat_after,
|
|
positionwise_layer_type=positionwise_layer_type,
|
|
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
|
|
macaron_style=use_macaron_style_in_conformer,
|
|
pos_enc_layer_type=conformer_pos_enc_layer_type,
|
|
selfattention_layer_type=conformer_self_attn_layer_type,
|
|
activation_type=conformer_activation_type,
|
|
use_cnn_module=use_cnn_in_conformer,
|
|
cnn_module_kernel=conformer_dec_kernel_size, )
|
|
elif decoder_type == 'cnndecoder':
|
|
self.decoder = CNNDecoder(
|
|
emb_dim=adim,
|
|
odim=odim,
|
|
kernel_size=cnn_postnet_kernel_size,
|
|
dropout_rate=cnn_dec_dropout_rate,
|
|
resblock_kernel_sizes=cnn_postnet_resblock_kernel_sizes)
|
|
else:
|
|
raise ValueError(f"{decoder_type} is not supported.")
|
|
|
|
# define final projection
|
|
self.feat_out = nn.Linear(adim, odim * reduction_factor)
|
|
|
|
# define postnet
|
|
if decoder_type == 'cnndecoder':
|
|
self.postnet = CNNPostnet(
|
|
odim=odim,
|
|
kernel_size=cnn_postnet_kernel_size,
|
|
dropout_rate=cnn_postnet_dropout_rate,
|
|
resblock_kernel_sizes=cnn_postnet_resblock_kernel_sizes)
|
|
else:
|
|
self.postnet = (None if postnet_layers == 0 else Postnet(
|
|
idim=idim,
|
|
odim=odim,
|
|
n_layers=postnet_layers,
|
|
n_chans=postnet_chans,
|
|
n_filts=postnet_filts,
|
|
use_batch_norm=use_batch_norm,
|
|
dropout_rate=postnet_dropout_rate, ))
|
|
|
|
nn.initializer.set_global_initializer(None)
|
|
|
|
self._reset_parameters(
|
|
init_enc_alpha=init_enc_alpha,
|
|
init_dec_alpha=init_dec_alpha, )
|
|
|
|
def forward(
|
|
self,
|
|
text: paddle.Tensor,
|
|
text_lengths: paddle.Tensor,
|
|
speech: paddle.Tensor,
|
|
speech_lengths: paddle.Tensor,
|
|
durations: paddle.Tensor,
|
|
pitch: paddle.Tensor,
|
|
energy: paddle.Tensor,
|
|
tone_id: paddle.Tensor=None,
|
|
spk_emb: paddle.Tensor=None,
|
|
spk_id: paddle.Tensor=None
|
|
) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
text(Tensor(int64)):
|
|
Batch of padded token ids (B, Tmax).
|
|
text_lengths(Tensor(int64)):
|
|
Batch of lengths of each input (B,).
|
|
speech(Tensor):
|
|
Batch of padded target features (B, Lmax, odim).
|
|
speech_lengths(Tensor(int64)):
|
|
Batch of the lengths of each target (B,).
|
|
durations(Tensor(int64)):
|
|
Batch of padded durations (B, Tmax).
|
|
pitch(Tensor):
|
|
Batch of padded token-averaged pitch (B, Tmax, 1).
|
|
energy(Tensor):
|
|
Batch of padded token-averaged energy (B, Tmax, 1).
|
|
tone_id(Tensor, optional(int64)):
|
|
Batch of padded tone ids (B, Tmax).
|
|
spk_emb(Tensor, optional):
|
|
Batch of speaker embeddings (B, spk_embed_dim).
|
|
spk_id(Tnesor, optional(int64)):
|
|
Batch of speaker ids (B,)
|
|
|
|
Returns:
|
|
|
|
"""
|
|
|
|
# input of embedding must be int64
|
|
xs = paddle.cast(text, 'int64')
|
|
ilens = paddle.cast(text_lengths, 'int64')
|
|
ds = paddle.cast(durations, 'int64')
|
|
olens = paddle.cast(speech_lengths, 'int64')
|
|
ys = speech
|
|
ps = pitch
|
|
es = energy
|
|
if spk_id is not None:
|
|
spk_id = paddle.cast(spk_id, 'int64')
|
|
if tone_id is not None:
|
|
tone_id = paddle.cast(tone_id, 'int64')
|
|
# forward propagation
|
|
before_outs, after_outs, d_outs, p_outs, e_outs, spk_logits = self._forward(
|
|
xs,
|
|
ilens,
|
|
olens,
|
|
ds,
|
|
ps,
|
|
es,
|
|
is_inference=False,
|
|
spk_emb=spk_emb,
|
|
spk_id=spk_id,
|
|
tone_id=tone_id)
|
|
# modify mod part of groundtruth
|
|
if self.reduction_factor > 1:
|
|
olens = olens - olens % self.reduction_factor
|
|
max_olen = max(olens)
|
|
ys = ys[:, :max_olen]
|
|
|
|
return before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits
|
|
|
|
def _forward(self,
|
|
xs: paddle.Tensor,
|
|
ilens: paddle.Tensor,
|
|
olens: paddle.Tensor=None,
|
|
ds: paddle.Tensor=None,
|
|
ps: paddle.Tensor=None,
|
|
es: paddle.Tensor=None,
|
|
is_inference: bool=False,
|
|
return_after_enc=False,
|
|
alpha: float=1.0,
|
|
spk_emb=None,
|
|
spk_id=None,
|
|
tone_id=None) -> Sequence[paddle.Tensor]:
|
|
# forward encoder
|
|
x_masks = self._source_mask(ilens)
|
|
# (B, Tmax, adim)
|
|
hs, _ = self.encoder(xs, x_masks)
|
|
|
|
if self.spk_num and self.enable_speaker_classifier and not is_inference:
|
|
hs_for_spk_cls = self.grad_reverse(hs)
|
|
spk_logits = self.speaker_classifier(hs_for_spk_cls, ilens)
|
|
else:
|
|
spk_logits = None
|
|
|
|
# integrate speaker embedding
|
|
if self.spk_embed_dim is not None:
|
|
# spk_emb has a higher priority than spk_id
|
|
if spk_emb is not None:
|
|
hs = self._integrate_with_spk_embed(hs, spk_emb)
|
|
elif spk_id is not None:
|
|
spk_emb = self.spk_embedding_table(spk_id)
|
|
hs = self._integrate_with_spk_embed(hs, spk_emb)
|
|
|
|
# integrate tone embedding
|
|
if self.tone_embed_dim is not None:
|
|
if tone_id is not None:
|
|
tone_embs = self.tone_embedding_table(tone_id)
|
|
hs = self._integrate_with_tone_embed(hs, tone_embs)
|
|
# forward duration predictor and variance predictors
|
|
d_masks = make_pad_mask(ilens)
|
|
|
|
if self.stop_gradient_from_pitch_predictor:
|
|
p_outs = self.pitch_predictor(hs.detach(), d_masks.unsqueeze(-1))
|
|
else:
|
|
p_outs = self.pitch_predictor(hs, d_masks.unsqueeze(-1))
|
|
if self.stop_gradient_from_energy_predictor:
|
|
e_outs = self.energy_predictor(hs.detach(), d_masks.unsqueeze(-1))
|
|
else:
|
|
e_outs = self.energy_predictor(hs, d_masks.unsqueeze(-1))
|
|
|
|
if is_inference:
|
|
# (B, Tmax)
|
|
if ds is not None:
|
|
d_outs = ds
|
|
else:
|
|
d_outs = self.duration_predictor.inference(hs, d_masks)
|
|
if ps is not None:
|
|
p_outs = ps
|
|
if es is not None:
|
|
e_outs = es
|
|
|
|
# use prediction in inference
|
|
# (B, Tmax, 1)
|
|
|
|
p_embs = self.pitch_embed(p_outs.transpose((0, 2, 1))).transpose(
|
|
(0, 2, 1))
|
|
e_embs = self.energy_embed(e_outs.transpose((0, 2, 1))).transpose(
|
|
(0, 2, 1))
|
|
hs = hs + e_embs + p_embs
|
|
|
|
# (B, Lmax, adim)
|
|
hs = self.length_regulator(hs, d_outs, alpha, is_inference=True)
|
|
else:
|
|
d_outs = self.duration_predictor(hs, d_masks)
|
|
# use groundtruth in training
|
|
p_embs = self.pitch_embed(ps.transpose((0, 2, 1))).transpose(
|
|
(0, 2, 1))
|
|
e_embs = self.energy_embed(es.transpose((0, 2, 1))).transpose(
|
|
(0, 2, 1))
|
|
hs = hs + e_embs + p_embs
|
|
|
|
# (B, Lmax, adim)
|
|
hs = self.length_regulator(hs, ds, is_inference=False)
|
|
|
|
# forward decoder
|
|
if olens is not None and not is_inference:
|
|
if self.reduction_factor > 1:
|
|
olens_in = paddle.to_tensor(
|
|
[olen // self.reduction_factor for olen in olens.numpy()])
|
|
else:
|
|
olens_in = olens
|
|
# (B, 1, T)
|
|
h_masks = self._source_mask(olens_in)
|
|
else:
|
|
h_masks = None
|
|
if return_after_enc:
|
|
return hs, h_masks
|
|
|
|
if self.decoder_type == 'cnndecoder':
|
|
# remove output masks for dygraph to static graph
|
|
zs = self.decoder(hs, h_masks)
|
|
before_outs = zs
|
|
else:
|
|
# (B, Lmax, adim)
|
|
zs, _ = self.decoder(hs, h_masks)
|
|
# (B, Lmax, odim)
|
|
before_outs = self.feat_out(zs).reshape(
|
|
(paddle.shape(zs)[0], -1, self.odim))
|
|
|
|
# postnet -> (B, Lmax//r * r, odim)
|
|
if self.postnet is None:
|
|
after_outs = before_outs
|
|
else:
|
|
after_outs = before_outs + self.postnet(
|
|
before_outs.transpose((0, 2, 1))).transpose((0, 2, 1))
|
|
|
|
return before_outs, after_outs, d_outs, p_outs, e_outs, spk_logits
|
|
|
|
def encoder_infer(
|
|
self,
|
|
text: paddle.Tensor,
|
|
spk_id=None,
|
|
alpha: float=1.0,
|
|
spk_emb=None,
|
|
tone_id=None,
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
# input of embedding must be int64
|
|
x = paddle.cast(text, 'int64')
|
|
# setup batch axis
|
|
ilens = paddle.shape(x)[0]
|
|
|
|
xs = x.unsqueeze(0)
|
|
|
|
if spk_emb is not None:
|
|
spk_emb = spk_emb.unsqueeze(0)
|
|
|
|
if tone_id is not None:
|
|
tone_id = tone_id.unsqueeze(0)
|
|
|
|
# (1, L, odim)
|
|
# use *_ to avoid bug in dygraph to static graph
|
|
hs, *_ = self._forward(
|
|
xs,
|
|
ilens,
|
|
is_inference=True,
|
|
return_after_enc=True,
|
|
alpha=alpha,
|
|
spk_emb=spk_emb,
|
|
spk_id=spk_id,
|
|
tone_id=tone_id)
|
|
return hs
|
|
|
|
def inference(
|
|
self,
|
|
text: paddle.Tensor,
|
|
durations: paddle.Tensor=None,
|
|
pitch: paddle.Tensor=None,
|
|
energy: paddle.Tensor=None,
|
|
alpha: float=1.0,
|
|
use_teacher_forcing: bool=False,
|
|
spk_emb=None,
|
|
spk_id=None,
|
|
tone_id=None,
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
"""Generate the sequence of features given the sequences of characters.
|
|
|
|
Args:
|
|
text(Tensor(int64)):
|
|
Input sequence of characters (T,).
|
|
durations(Tensor, optional (int64)):
|
|
Groundtruth of duration (T,).
|
|
pitch(Tensor, optional):
|
|
Groundtruth of token-averaged pitch (T, 1).
|
|
energy(Tensor, optional):
|
|
Groundtruth of token-averaged energy (T, 1).
|
|
alpha(float, optional):
|
|
Alpha to control the speed.
|
|
use_teacher_forcing(bool, optional):
|
|
Whether to use teacher forcing.
|
|
If true, groundtruth of duration, pitch and energy will be used.
|
|
spk_emb(Tensor, optional, optional):
|
|
peaker embedding vector (spk_embed_dim,). (Default value = None)
|
|
spk_id(Tensor, optional(int64), optional):
|
|
spk ids (1,). (Default value = None)
|
|
tone_id(Tensor, optional(int64), optional):
|
|
tone ids (T,). (Default value = None)
|
|
|
|
Returns:
|
|
|
|
"""
|
|
# input of embedding must be int64
|
|
x = paddle.cast(text, 'int64')
|
|
d, p, e = durations, pitch, energy
|
|
# setup batch axis
|
|
ilens = paddle.shape(x)[0]
|
|
|
|
xs = x.unsqueeze(0)
|
|
|
|
if spk_emb is not None:
|
|
spk_emb = spk_emb.unsqueeze(0)
|
|
|
|
if tone_id is not None:
|
|
tone_id = tone_id.unsqueeze(0)
|
|
|
|
if use_teacher_forcing:
|
|
# use groundtruth of duration, pitch, and energy
|
|
ds = d.unsqueeze(0) if d is not None else None
|
|
ps = p.unsqueeze(0) if p is not None else None
|
|
es = e.unsqueeze(0) if e is not None else None
|
|
|
|
# (1, L, odim)
|
|
_, outs, d_outs, p_outs, e_outs, _ = self._forward(
|
|
xs,
|
|
ilens,
|
|
ds=ds,
|
|
ps=ps,
|
|
es=es,
|
|
spk_emb=spk_emb,
|
|
spk_id=spk_id,
|
|
tone_id=tone_id,
|
|
is_inference=True)
|
|
else:
|
|
# (1, L, odim)
|
|
_, outs, d_outs, p_outs, e_outs, _ = self._forward(
|
|
xs,
|
|
ilens,
|
|
is_inference=True,
|
|
alpha=alpha,
|
|
spk_emb=spk_emb,
|
|
spk_id=spk_id,
|
|
tone_id=tone_id)
|
|
|
|
return outs[0], d_outs[0], p_outs[0], e_outs[0]
|
|
|
|
def _integrate_with_spk_embed(self, hs, spk_emb):
|
|
"""Integrate speaker embedding with hidden states.
|
|
|
|
Args:
|
|
hs(Tensor):
|
|
Batch of hidden state sequences (B, Tmax, adim).
|
|
spk_emb(Tensor):
|
|
Batch of speaker embeddings (B, spk_embed_dim).
|
|
|
|
Returns:
|
|
|
|
|
|
"""
|
|
if self.spk_embed_integration_type == "add":
|
|
# apply projection and then add to hidden states
|
|
spk_emb = self.spk_projection(F.normalize(spk_emb))
|
|
hs = hs + spk_emb.unsqueeze(1)
|
|
elif self.spk_embed_integration_type == "concat":
|
|
# concat hidden states with spk embeds and then apply projection
|
|
spk_emb = F.normalize(spk_emb).unsqueeze(1).expand(
|
|
shape=[-1, paddle.shape(hs)[1], -1])
|
|
hs = self.spk_projection(paddle.concat([hs, spk_emb], axis=-1))
|
|
else:
|
|
raise NotImplementedError("support only add or concat.")
|
|
|
|
return hs
|
|
|
|
def _integrate_with_tone_embed(self, hs, tone_embs):
|
|
"""Integrate speaker embedding with hidden states.
|
|
|
|
Args:
|
|
hs(Tensor):
|
|
Batch of hidden state sequences (B, Tmax, adim).
|
|
tone_embs(Tensor):
|
|
Batch of speaker embeddings (B, Tmax, tone_embed_dim).
|
|
|
|
Returns:
|
|
|
|
"""
|
|
if self.tone_embed_integration_type == "add":
|
|
# apply projection and then add to hidden states
|
|
tone_embs = self.tone_projection(F.normalize(tone_embs))
|
|
hs = hs + tone_embs
|
|
|
|
elif self.tone_embed_integration_type == "concat":
|
|
# concat hidden states with tone embeds and then apply projection
|
|
tone_embs = F.normalize(tone_embs).expand(
|
|
shape=[-1, hs.shape[1], -1])
|
|
hs = self.tone_projection(paddle.concat([hs, tone_embs], axis=-1))
|
|
else:
|
|
raise NotImplementedError("support only add or concat.")
|
|
return hs
|
|
|
|
def _source_mask(self, ilens: paddle.Tensor) -> paddle.Tensor:
|
|
"""Make masks for self-attention.
|
|
|
|
Args:
|
|
ilens(Tensor):
|
|
Batch of lengths (B,).
|
|
|
|
Returns:
|
|
Tensor:
|
|
Mask tensor for self-attention. dtype=paddle.bool
|
|
|
|
Examples:
|
|
>>> ilens = [5, 3]
|
|
>>> self._source_mask(ilens)
|
|
tensor([[[1, 1, 1, 1, 1],
|
|
[1, 1, 1, 0, 0]]]) bool
|
|
"""
|
|
x_masks = make_non_pad_mask(ilens)
|
|
return x_masks.unsqueeze(-2)
|
|
|
|
def _reset_parameters(self, init_enc_alpha: float, init_dec_alpha: float):
|
|
|
|
# initialize alpha in scaled positional encoding
|
|
if self.encoder_type == "transformer" and self.use_scaled_pos_enc:
|
|
init_enc_alpha = paddle.to_tensor(init_enc_alpha)
|
|
self.encoder.embed[-1].alpha = paddle.create_parameter(
|
|
shape=init_enc_alpha.shape,
|
|
dtype=str(init_enc_alpha.numpy().dtype),
|
|
default_initializer=paddle.nn.initializer.Assign(
|
|
init_enc_alpha))
|
|
if self.decoder_type == "transformer" and self.use_scaled_pos_enc:
|
|
init_dec_alpha = paddle.to_tensor(init_dec_alpha)
|
|
self.decoder.embed[-1].alpha = paddle.create_parameter(
|
|
shape=init_dec_alpha.shape,
|
|
dtype=str(init_dec_alpha.numpy().dtype),
|
|
default_initializer=paddle.nn.initializer.Assign(
|
|
init_dec_alpha))
|
|
|
|
|
|
class FastSpeech2Inference(nn.Layer):
|
|
def __init__(self, normalizer, model):
|
|
super().__init__()
|
|
self.normalizer = normalizer
|
|
self.acoustic_model = model
|
|
|
|
def forward(self, text, spk_id=None, spk_emb=None):
|
|
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
|
|
text, spk_id=spk_id, spk_emb=spk_emb)
|
|
logmel = self.normalizer.inverse(normalized_mel)
|
|
return logmel
|
|
|
|
|
|
class StyleFastSpeech2Inference(FastSpeech2Inference):
|
|
def __init__(self,
|
|
normalizer,
|
|
model,
|
|
pitch_stats_path=None,
|
|
energy_stats_path=None):
|
|
super().__init__(normalizer, model)
|
|
if pitch_stats_path:
|
|
pitch_mean, pitch_std = np.load(pitch_stats_path)
|
|
self.pitch_mean = paddle.to_tensor(pitch_mean)
|
|
self.pitch_std = paddle.to_tensor(pitch_std)
|
|
if energy_stats_path:
|
|
energy_mean, energy_std = np.load(energy_stats_path)
|
|
self.energy_mean = paddle.to_tensor(energy_mean)
|
|
self.energy_std = paddle.to_tensor(energy_std)
|
|
|
|
def denorm(self, data, mean, std):
|
|
return data * std + mean
|
|
|
|
def norm(self, data, mean, std):
|
|
return (data - mean) / std
|
|
|
|
def forward(self,
|
|
text: paddle.Tensor,
|
|
durations: Union[paddle.Tensor, np.ndarray]=None,
|
|
durations_scale: Union[int, float]=None,
|
|
durations_bias: Union[int, float]=None,
|
|
pitch: Union[paddle.Tensor, np.ndarray]=None,
|
|
pitch_scale: Union[int, float]=None,
|
|
pitch_bias: Union[int, float]=None,
|
|
energy: Union[paddle.Tensor, np.ndarray]=None,
|
|
energy_scale: Union[int, float]=None,
|
|
energy_bias: Union[int, float]=None,
|
|
robot: bool=False,
|
|
spk_emb=None,
|
|
spk_id=None):
|
|
"""
|
|
|
|
Args:
|
|
text(Tensor(int64)):
|
|
Input sequence of characters (T,).
|
|
durations(paddle.Tensor/np.ndarray, optional (int64)):
|
|
Groundtruth of duration (T,), this will overwrite the set of durations_scale and durations_bias
|
|
durations_scale(int/float, optional):
|
|
|
|
durations_bias(int/float, optional):
|
|
|
|
pitch(paddle.Tensor/np.ndarray, optional):
|
|
Groundtruth of token-averaged pitch (T, 1), this will overwrite the set of pitch_scale and pitch_bias
|
|
pitch_scale(int/float, optional):
|
|
In denormed HZ domain.
|
|
pitch_bias(int/float, optional):
|
|
In denormed HZ domain.
|
|
energy(paddle.Tensor/np.ndarray, optional):
|
|
Groundtruth of token-averaged energy (T, 1), this will overwrite the set of energy_scale and energy_bias
|
|
energy_scale(int/float, optional):
|
|
In denormed domain.
|
|
energy_bias(int/float, optional):
|
|
In denormed domain.
|
|
robot(bool) (Default value = False):
|
|
|
|
spk_emb(Default value = None):
|
|
|
|
spk_id(Default value = None):
|
|
|
|
|
|
Returns:
|
|
Tensor: logmel
|
|
|
|
"""
|
|
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
|
|
text,
|
|
durations=None,
|
|
pitch=None,
|
|
energy=None,
|
|
spk_emb=spk_emb,
|
|
spk_id=spk_id)
|
|
# priority: groundtruth > scale/bias > previous output
|
|
# set durations
|
|
if isinstance(durations, np.ndarray):
|
|
durations = paddle.to_tensor(durations)
|
|
elif isinstance(durations, paddle.Tensor):
|
|
durations = durations
|
|
elif durations_scale or durations_bias:
|
|
durations_scale = durations_scale if durations_scale is not None else 1
|
|
durations_bias = durations_bias if durations_bias is not None else 0
|
|
durations = durations_scale * d_outs + durations_bias
|
|
else:
|
|
durations = d_outs
|
|
|
|
if robot:
|
|
# set normed pitch to zeros have the same effect with set denormd ones to mean
|
|
pitch = paddle.zeros(p_outs.shape)
|
|
|
|
# set pitch, can overwrite robot set
|
|
if isinstance(pitch, np.ndarray):
|
|
pitch = paddle.to_tensor(pitch)
|
|
elif isinstance(pitch, paddle.Tensor):
|
|
pitch = pitch
|
|
elif pitch_scale or pitch_bias:
|
|
pitch_scale = pitch_scale if pitch_scale is not None else 1
|
|
pitch_bias = pitch_bias if pitch_bias is not None else 0
|
|
p_Hz = paddle.exp(
|
|
self.denorm(p_outs, self.pitch_mean, self.pitch_std))
|
|
p_HZ = pitch_scale * p_Hz + pitch_bias
|
|
pitch = self.norm(paddle.log(p_HZ), self.pitch_mean, self.pitch_std)
|
|
else:
|
|
pitch = p_outs
|
|
|
|
# set energy
|
|
if isinstance(energy, np.ndarray):
|
|
energy = paddle.to_tensor(energy)
|
|
elif isinstance(energy, paddle.Tensor):
|
|
energy = energy
|
|
elif energy_scale or energy_bias:
|
|
energy_scale = energy_scale if energy_scale is not None else 1
|
|
energy_bias = energy_bias if energy_bias is not None else 0
|
|
e_dnorm = self.denorm(e_outs, self.energy_mean, self.energy_std)
|
|
e_dnorm = energy_scale * e_dnorm + energy_bias
|
|
energy = self.norm(e_dnorm, self.energy_mean, self.energy_std)
|
|
else:
|
|
energy = e_outs
|
|
|
|
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
|
|
text,
|
|
durations=durations,
|
|
pitch=pitch,
|
|
energy=energy,
|
|
use_teacher_forcing=True,
|
|
spk_emb=spk_emb,
|
|
spk_id=spk_id)
|
|
|
|
logmel = self.normalizer.inverse(normalized_mel)
|
|
return logmel
|
|
|
|
|
|
class FastSpeech2Loss(nn.Layer):
|
|
"""Loss function module for FastSpeech2."""
|
|
|
|
def __init__(self, use_masking: bool=True,
|
|
use_weighted_masking: bool=False):
|
|
"""Initialize feed-forward Transformer loss module.
|
|
Args:
|
|
use_masking (bool):
|
|
Whether to apply masking for padded part in loss calculation.
|
|
use_weighted_masking (bool):
|
|
Whether to weighted masking in loss calculation.
|
|
"""
|
|
assert check_argument_types()
|
|
super().__init__()
|
|
|
|
assert (use_masking != use_weighted_masking) or not use_masking
|
|
self.use_masking = use_masking
|
|
self.use_weighted_masking = use_weighted_masking
|
|
|
|
# define criterions
|
|
reduction = "none" if self.use_weighted_masking else "mean"
|
|
self.l1_criterion = nn.L1Loss(reduction=reduction)
|
|
self.mse_criterion = nn.MSELoss(reduction=reduction)
|
|
self.duration_criterion = DurationPredictorLoss(reduction=reduction)
|
|
self.ce_criterion = nn.CrossEntropyLoss()
|
|
|
|
def forward(
|
|
self,
|
|
after_outs: paddle.Tensor,
|
|
before_outs: paddle.Tensor,
|
|
d_outs: paddle.Tensor,
|
|
p_outs: paddle.Tensor,
|
|
e_outs: paddle.Tensor,
|
|
ys: paddle.Tensor,
|
|
ds: paddle.Tensor,
|
|
ps: paddle.Tensor,
|
|
es: paddle.Tensor,
|
|
ilens: paddle.Tensor,
|
|
olens: paddle.Tensor,
|
|
spk_logits: paddle.Tensor=None,
|
|
spk_ids: paddle.Tensor=None,
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor,
|
|
paddle.Tensor, ]:
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
after_outs(Tensor):
|
|
Batch of outputs after postnets (B, Lmax, odim).
|
|
before_outs(Tensor):
|
|
Batch of outputs before postnets (B, Lmax, odim).
|
|
d_outs(Tensor):
|
|
Batch of outputs of duration predictor (B, Tmax).
|
|
p_outs(Tensor):
|
|
Batch of outputs of pitch predictor (B, Tmax, 1).
|
|
e_outs(Tensor):
|
|
Batch of outputs of energy predictor (B, Tmax, 1).
|
|
ys(Tensor):
|
|
Batch of target features (B, Lmax, odim).
|
|
ds(Tensor):
|
|
Batch of durations (B, Tmax).
|
|
ps(Tensor):
|
|
Batch of target token-averaged pitch (B, Tmax, 1).
|
|
es(Tensor):
|
|
Batch of target token-averaged energy (B, Tmax, 1).
|
|
ilens(Tensor):
|
|
Batch of the lengths of each input (B,).
|
|
olens(Tensor):
|
|
Batch of the lengths of each target (B,).
|
|
spk_logits(Option[Tensor]):
|
|
Batch of outputs after speaker classifier (B, Lmax, num_spk)
|
|
spk_ids(Option[Tensor]):
|
|
Batch of target spk_id (B,)
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
"""
|
|
speaker_loss = 0.0
|
|
|
|
# apply mask to remove padded part
|
|
if self.use_masking:
|
|
out_masks = make_non_pad_mask(olens).unsqueeze(-1)
|
|
before_outs = before_outs.masked_select(
|
|
out_masks.broadcast_to(before_outs.shape))
|
|
if after_outs is not None:
|
|
after_outs = after_outs.masked_select(
|
|
out_masks.broadcast_to(after_outs.shape))
|
|
ys = ys.masked_select(out_masks.broadcast_to(ys.shape))
|
|
duration_masks = make_non_pad_mask(ilens)
|
|
d_outs = d_outs.masked_select(
|
|
duration_masks.broadcast_to(d_outs.shape))
|
|
ds = ds.masked_select(duration_masks.broadcast_to(ds.shape))
|
|
pitch_masks = make_non_pad_mask(ilens).unsqueeze(-1)
|
|
p_outs = p_outs.masked_select(
|
|
pitch_masks.broadcast_to(p_outs.shape))
|
|
e_outs = e_outs.masked_select(
|
|
pitch_masks.broadcast_to(e_outs.shape))
|
|
ps = ps.masked_select(pitch_masks.broadcast_to(ps.shape))
|
|
es = es.masked_select(pitch_masks.broadcast_to(es.shape))
|
|
|
|
if spk_logits is not None and spk_ids is not None:
|
|
batch_size = spk_ids.shape[0]
|
|
spk_ids = paddle.repeat_interleave(spk_ids, spk_logits.shape[1],
|
|
None)
|
|
spk_logits = paddle.reshape(spk_logits,
|
|
[-1, spk_logits.shape[-1]])
|
|
mask_index = spk_logits.abs().sum(axis=1) != 0
|
|
spk_ids = spk_ids[mask_index]
|
|
spk_logits = spk_logits[mask_index]
|
|
|
|
# calculate loss
|
|
l1_loss = self.l1_criterion(before_outs, ys)
|
|
if after_outs is not None:
|
|
l1_loss += self.l1_criterion(after_outs, ys)
|
|
duration_loss = self.duration_criterion(d_outs, ds)
|
|
pitch_loss = self.mse_criterion(p_outs, ps)
|
|
energy_loss = self.mse_criterion(e_outs, es)
|
|
|
|
if spk_logits is not None and spk_ids is not None:
|
|
speaker_loss = self.ce_criterion(spk_logits, spk_ids) / batch_size
|
|
|
|
# make weighted mask and apply it
|
|
if self.use_weighted_masking:
|
|
out_masks = make_non_pad_mask(olens).unsqueeze(-1)
|
|
out_weights = out_masks.cast(dtype=paddle.float32) / out_masks.cast(
|
|
dtype=paddle.float32).sum(
|
|
axis=1, keepdim=True)
|
|
out_weights /= ys.shape[0] * ys.shape[2]
|
|
duration_masks = make_non_pad_mask(ilens)
|
|
duration_weights = (duration_masks.cast(dtype=paddle.float32) /
|
|
duration_masks.cast(dtype=paddle.float32).sum(
|
|
axis=1, keepdim=True))
|
|
duration_weights /= ds.shape[0]
|
|
|
|
# apply weight
|
|
|
|
l1_loss = l1_loss.multiply(out_weights)
|
|
l1_loss = l1_loss.masked_select(
|
|
out_masks.broadcast_to(l1_loss.shape)).sum()
|
|
duration_loss = (duration_loss.multiply(duration_weights)
|
|
.masked_select(duration_masks).sum())
|
|
pitch_masks = duration_masks.unsqueeze(-1)
|
|
pitch_weights = duration_weights.unsqueeze(-1)
|
|
pitch_loss = pitch_loss.multiply(pitch_weights)
|
|
pitch_loss = pitch_loss.masked_select(
|
|
pitch_masks.broadcast_to(pitch_loss.shape)).sum()
|
|
energy_loss = energy_loss.multiply(pitch_weights)
|
|
energy_loss = energy_loss.masked_select(
|
|
pitch_masks.broadcast_to(energy_loss.shape)).sum()
|
|
|
|
return l1_loss, duration_loss, pitch_loss, energy_loss, speaker_loss
|