You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
84 lines
2.5 KiB
84 lines
2.5 KiB
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "frontend/feature_cache.h"
|
|
|
|
namespace ppspeech {
|
|
|
|
using kaldi::Vector;
|
|
using kaldi::VectorBase;
|
|
using kaldi::BaseFloat;
|
|
using std::vector;
|
|
using kaldi::SubVector;
|
|
using std::unique_ptr;
|
|
|
|
FeatureCache::FeatureCache(
|
|
int max_size, unique_ptr<FeatureExtractorInterface> base_extractor) {
|
|
max_size_ = max_size;
|
|
base_extractor_ = std::move(base_extractor);
|
|
}
|
|
|
|
void FeatureCache::Accept(
|
|
const kaldi::VectorBase<kaldi::BaseFloat>& inputs) {
|
|
base_extractor_->Accept(inputs);
|
|
// feed current data
|
|
bool result = false;
|
|
do {
|
|
result = Compute();
|
|
} while (result);
|
|
}
|
|
|
|
// pop feature chunk
|
|
bool FeatureCache::Read(kaldi::Vector<kaldi::BaseFloat>* output_feats) {
|
|
kaldi::Timer timer;
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
while (cache_.empty() && base_extractor_->IsFinished() == false) {
|
|
ready_read_condition_.wait(lock);
|
|
BaseFloat elapsed = timer.Elapsed() * 1000;
|
|
// todo replace 1.0 with timeout_
|
|
if (elapsed > 1.0) {
|
|
return false;
|
|
}
|
|
usleep(1000); // sleep 1 ms
|
|
}
|
|
if (cache_.empty()) return false;
|
|
output_feats->Resize(cache_.front().Dim());
|
|
output_feats->CopyFromVec(cache_.front());
|
|
cache_.pop();
|
|
ready_feed_condition_.notify_one();
|
|
return true;
|
|
}
|
|
|
|
// read all data from base_feature_extractor_ into cache_
|
|
bool FeatureCache::Compute() {
|
|
// compute and feed
|
|
Vector<BaseFloat> feature_chunk;
|
|
bool result = base_extractor_->Read(&feature_chunk);
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
while (cache_.size() >= max_size_) {
|
|
ready_feed_condition_.wait(lock);
|
|
}
|
|
if (feature_chunk.Dim() != 0) {
|
|
cache_.push(feature_chunk);
|
|
}
|
|
ready_read_condition_.notify_one();
|
|
return result;
|
|
}
|
|
|
|
void Reset() {
|
|
// std::lock_guard<std::mutex> lock(mutex_);
|
|
return;
|
|
}
|
|
|
|
} // namespace ppspeech
|