You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/speechx/speechx/frontend/feature_cache.cc

84 lines
2.5 KiB

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "frontend/feature_cache.h"
namespace ppspeech {
using kaldi::Vector;
using kaldi::VectorBase;
using kaldi::BaseFloat;
using std::vector;
using kaldi::SubVector;
using std::unique_ptr;
FeatureCache::FeatureCache(
int max_size, unique_ptr<FeatureExtractorInterface> base_extractor) {
max_size_ = max_size;
base_extractor_ = std::move(base_extractor);
}
void FeatureCache::Accept(
const kaldi::VectorBase<kaldi::BaseFloat>& inputs) {
base_extractor_->Accept(inputs);
// feed current data
bool result = false;
do {
result = Compute();
} while (result);
}
// pop feature chunk
bool FeatureCache::Read(kaldi::Vector<kaldi::BaseFloat>* output_feats) {
kaldi::Timer timer;
std::unique_lock<std::mutex> lock(mutex_);
while (cache_.empty() && base_extractor_->IsFinished() == false) {
ready_read_condition_.wait(lock);
BaseFloat elapsed = timer.Elapsed() * 1000;
// todo replace 1.0 with timeout_
if (elapsed > 1.0) {
return false;
}
usleep(1000); // sleep 1 ms
}
if (cache_.empty()) return false;
output_feats->Resize(cache_.front().Dim());
output_feats->CopyFromVec(cache_.front());
cache_.pop();
ready_feed_condition_.notify_one();
return true;
}
// read all data from base_feature_extractor_ into cache_
bool FeatureCache::Compute() {
// compute and feed
Vector<BaseFloat> feature_chunk;
bool result = base_extractor_->Read(&feature_chunk);
std::unique_lock<std::mutex> lock(mutex_);
while (cache_.size() >= max_size_) {
ready_feed_condition_.wait(lock);
}
if (feature_chunk.Dim() != 0) {
cache_.push(feature_chunk);
}
ready_read_condition_.notify_one();
return result;
}
void Reset() {
// std::lock_guard<std::mutex> lock(mutex_);
return;
}
} // namespace ppspeech