You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/audio/paddleaudio/datasets/rirs_noises.py

202 lines
7.2 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import csv
import os
import random
from typing import List
from paddle.io import Dataset
from tqdm import tqdm
from ..backends import load as load_audio
from ..backends import save as save_wav
from ..utils import DATA_HOME
from ..utils.download import download_and_decompress
from .dataset import feat_funcs
__all__ = ['OpenRIRNoise']
class OpenRIRNoise(Dataset):
archieves = [
{
'url': 'http://www.openslr.org/resources/28/rirs_noises.zip',
'md5': 'e6f48e257286e05de56413b4779d8ffb',
},
]
sample_rate = 16000
meta_info = collections.namedtuple('META_INFO', ('id', 'duration', 'wav'))
base_path = os.path.join(DATA_HOME, 'open_rir_noise')
wav_path = os.path.join(base_path, 'RIRS_NOISES')
csv_path = os.path.join(base_path, 'csv')
subsets = ['rir', 'noise']
def __init__(self,
subset: str='rir',
feat_type: str='raw',
target_dir=None,
random_chunk: bool=True,
chunk_duration: float=3.0,
seed: int=0,
**kwargs):
assert subset in self.subsets, \
'Dataset subset must be one in {}, but got {}'.format(self.subsets, subset)
self.subset = subset
self.feat_type = feat_type
self.feat_config = kwargs
self.random_chunk = random_chunk
self.chunk_duration = chunk_duration
OpenRIRNoise.csv_path = os.path.join(
target_dir, "open_rir_noise",
"csv") if target_dir else self.csv_path
self._data = self._get_data()
super(OpenRIRNoise, self).__init__()
# Set up a seed to reproduce training or predicting result.
# random.seed(seed)
def _get_data(self):
# Download audio files.
print(f"rirs noises base path: {self.base_path}")
if not os.path.isdir(self.base_path):
download_and_decompress(
self.archieves, self.base_path, decompress=True)
else:
print(
f"{self.base_path} already exists, we will not download and decompress again"
)
# Data preparation.
print(f"prepare the csv to {self.csv_path}")
if not os.path.isdir(self.csv_path):
os.makedirs(self.csv_path)
self.prepare_data()
data = []
with open(os.path.join(self.csv_path, f'{self.subset}.csv'), 'r') as rf:
for line in rf.readlines()[1:]:
audio_id, duration, wav = line.strip().split(',')
data.append(self.meta_info(audio_id, float(duration), wav))
random.shuffle(data)
return data
def _convert_to_record(self, idx: int):
sample = self._data[idx]
record = {}
# To show all fields in a namedtuple: `type(sample)._fields`
for field in type(sample)._fields:
record[field] = getattr(sample, field)
waveform, sr = load_audio(record['wav'])
assert self.feat_type in feat_funcs.keys(), \
f"Unknown feat_type: {self.feat_type}, it must be one in {list(feat_funcs.keys())}"
feat_func = feat_funcs[self.feat_type]
feat = feat_func(
waveform, sr=sr, **self.feat_config) if feat_func else waveform
record.update({'feat': feat})
return record
@staticmethod
def _get_chunks(seg_dur, audio_id, audio_duration):
num_chunks = int(audio_duration / seg_dur) # all in milliseconds
chunk_lst = [
audio_id + "_" + str(i * seg_dur) + "_" + str(i * seg_dur + seg_dur)
for i in range(num_chunks)
]
return chunk_lst
def _get_audio_info(self, wav_file: str,
split_chunks: bool) -> List[List[str]]:
waveform, sr = load_audio(wav_file)
audio_id = wav_file.split("/open_rir_noise/")[-1].split(".")[0]
audio_duration = waveform.shape[0] / sr
ret = []
if split_chunks and audio_duration > self.chunk_duration: # Split into pieces of self.chunk_duration seconds.
uniq_chunks_list = self._get_chunks(self.chunk_duration, audio_id,
audio_duration)
for idx, chunk in enumerate(uniq_chunks_list):
s, e = chunk.split("_")[-2:] # Timestamps of start and end
start_sample = int(float(s) * sr)
end_sample = int(float(e) * sr)
new_wav_file = os.path.join(self.base_path,
audio_id + f'_chunk_{idx+1:02}.wav')
save_wav(waveform[start_sample:end_sample], sr, new_wav_file)
# id, duration, new_wav
ret.append([chunk, self.chunk_duration, new_wav_file])
else: # Keep whole audio.
ret.append([audio_id, audio_duration, wav_file])
return ret
def generate_csv(self,
wav_files: List[str],
output_file: str,
split_chunks: bool=True):
print(f'Generating csv: {output_file}')
header = ["id", "duration", "wav"]
infos = list(
tqdm(
map(self._get_audio_info, wav_files, [split_chunks] * len(
wav_files)),
total=len(wav_files)))
csv_lines = []
for info in infos:
csv_lines.extend(info)
with open(output_file, mode="w") as csv_f:
csv_writer = csv.writer(
csv_f, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL)
csv_writer.writerow(header)
for line in csv_lines:
csv_writer.writerow(line)
def prepare_data(self):
rir_list = os.path.join(self.wav_path, "real_rirs_isotropic_noises",
"rir_list")
rir_files = []
with open(rir_list, 'r') as f:
for line in f.readlines():
rir_file = line.strip().split(' ')[-1]
rir_files.append(os.path.join(self.base_path, rir_file))
noise_list = os.path.join(self.wav_path, "pointsource_noises",
"noise_list")
noise_files = []
with open(noise_list, 'r') as f:
for line in f.readlines():
noise_file = line.strip().split(' ')[-1]
noise_files.append(os.path.join(self.base_path, noise_file))
self.generate_csv(rir_files, os.path.join(self.csv_path, 'rir.csv'))
self.generate_csv(noise_files, os.path.join(self.csv_path, 'noise.csv'))
def __getitem__(self, idx):
return self._convert_to_record(idx)
def __len__(self):
return len(self._data)