You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
269 lines
8.9 KiB
269 lines
8.9 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import jsonlines
|
|
import numpy as np
|
|
import paddle
|
|
import soundfile as sf
|
|
import yaml
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
|
from paddlespeech.t2s.datasets.data_table import DataTable
|
|
from paddlespeech.t2s.modules.normalizer import ZScore
|
|
|
|
model_alias = {
|
|
# acoustic model
|
|
"speedyspeech":
|
|
"paddlespeech.t2s.models.speedyspeech:SpeedySpeech",
|
|
"speedyspeech_inference":
|
|
"paddlespeech.t2s.models.speedyspeech:SpeedySpeechInference",
|
|
"fastspeech2":
|
|
"paddlespeech.t2s.models.fastspeech2:FastSpeech2",
|
|
"fastspeech2_inference":
|
|
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
|
|
# voc
|
|
"pwgan":
|
|
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
|
|
"pwgan_inference":
|
|
"paddlespeech.t2s.models.parallel_wavegan:PWGInference",
|
|
"mb_melgan":
|
|
"paddlespeech.t2s.models.melgan:MelGANGenerator",
|
|
"mb_melgan_inference":
|
|
"paddlespeech.t2s.models.melgan:MelGANInference",
|
|
}
|
|
|
|
|
|
def evaluate(args):
|
|
# dataloader has been too verbose
|
|
logging.getLogger("DataLoader").disabled = True
|
|
|
|
# construct dataset for evaluation
|
|
with jsonlines.open(args.test_metadata, 'r') as reader:
|
|
test_metadata = list(reader)
|
|
|
|
# Init body.
|
|
with open(args.am_config) as f:
|
|
am_config = CfgNode(yaml.safe_load(f))
|
|
with open(args.voc_config) as f:
|
|
voc_config = CfgNode(yaml.safe_load(f))
|
|
|
|
print("========Args========")
|
|
print(yaml.safe_dump(vars(args)))
|
|
print("========Config========")
|
|
print(am_config)
|
|
print(voc_config)
|
|
|
|
# construct dataset for evaluation
|
|
|
|
# model: {model_name}_{dataset}
|
|
am_name = args.am[:args.am.rindex('_')]
|
|
am_dataset = args.am[args.am.rindex('_') + 1:]
|
|
|
|
if am_name == 'fastspeech2':
|
|
fields = ["utt_id", "text"]
|
|
spk_num = None
|
|
if am_dataset in {"aishell3", "vctk"} and args.speaker_dict:
|
|
print("multiple speaker fastspeech2!")
|
|
with open(args.speaker_dict, 'rt') as f:
|
|
spk_id = [line.strip().split() for line in f.readlines()]
|
|
spk_num = len(spk_id)
|
|
fields += ["spk_id"]
|
|
elif args.voice_cloning:
|
|
print("voice cloning!")
|
|
fields += ["spk_emb"]
|
|
else:
|
|
print("single speaker fastspeech2!")
|
|
print("spk_num:", spk_num)
|
|
elif am_name == 'speedyspeech':
|
|
fields = ["utt_id", "phones", "tones"]
|
|
|
|
test_dataset = DataTable(data=test_metadata, fields=fields)
|
|
|
|
with open(args.phones_dict, "r") as f:
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
vocab_size = len(phn_id)
|
|
print("vocab_size:", vocab_size)
|
|
|
|
tone_size = None
|
|
if args.tones_dict:
|
|
with open(args.tones_dict, "r") as f:
|
|
tone_id = [line.strip().split() for line in f.readlines()]
|
|
tone_size = len(tone_id)
|
|
print("tone_size:", tone_size)
|
|
|
|
# acoustic model
|
|
odim = am_config.n_mels
|
|
am_class = dynamic_import(am_name, model_alias)
|
|
am_inference_class = dynamic_import(am_name + '_inference', model_alias)
|
|
|
|
if am_name == 'fastspeech2':
|
|
am = am_class(
|
|
idim=vocab_size, odim=odim, spk_num=spk_num, **am_config["model"])
|
|
elif am_name == 'speedyspeech':
|
|
am = am_class(
|
|
vocab_size=vocab_size, tone_size=tone_size, **am_config["model"])
|
|
|
|
am.set_state_dict(paddle.load(args.am_ckpt)["main_params"])
|
|
am.eval()
|
|
am_mu, am_std = np.load(args.am_stat)
|
|
am_mu = paddle.to_tensor(am_mu)
|
|
am_std = paddle.to_tensor(am_std)
|
|
am_normalizer = ZScore(am_mu, am_std)
|
|
am_inference = am_inference_class(am_normalizer, am)
|
|
print("am_inference.training0:", am_inference.training)
|
|
am_inference.eval()
|
|
print("acoustic model done!")
|
|
|
|
# vocoder
|
|
# model: {model_name}_{dataset}
|
|
voc_name = args.voc[:args.voc.rindex('_')]
|
|
voc_class = dynamic_import(voc_name, model_alias)
|
|
voc_inference_class = dynamic_import(voc_name + '_inference', model_alias)
|
|
voc = voc_class(**voc_config["generator_params"])
|
|
voc.set_state_dict(paddle.load(args.voc_ckpt)["generator_params"])
|
|
voc.remove_weight_norm()
|
|
voc.eval()
|
|
voc_mu, voc_std = np.load(args.voc_stat)
|
|
voc_mu = paddle.to_tensor(voc_mu)
|
|
voc_std = paddle.to_tensor(voc_std)
|
|
voc_normalizer = ZScore(voc_mu, voc_std)
|
|
voc_inference = voc_inference_class(voc_normalizer, voc)
|
|
print("voc_inference.training0:", voc_inference.training)
|
|
voc_inference.eval()
|
|
print("voc done!")
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
for datum in test_dataset:
|
|
utt_id = datum["utt_id"]
|
|
with paddle.no_grad():
|
|
# acoustic model
|
|
if am_name == 'fastspeech2':
|
|
phone_ids = paddle.to_tensor(datum["text"])
|
|
spk_emb = None
|
|
spk_id = None
|
|
# multi speaker
|
|
if args.voice_cloning and "spk_emb" in datum:
|
|
spk_emb = paddle.to_tensor(np.load(datum["spk_emb"]))
|
|
elif "spk_id" in datum:
|
|
spk_id = paddle.to_tensor(datum["spk_id"])
|
|
mel = am_inference(phone_ids, spk_id=spk_id, spk_emb=spk_emb)
|
|
elif am_name == 'speedyspeech':
|
|
phone_ids = paddle.to_tensor(datum["phones"])
|
|
tone_ids = paddle.to_tensor(datum["tones"])
|
|
mel = am_inference(phone_ids, tone_ids)
|
|
# vocoder
|
|
wav = voc_inference(mel)
|
|
sf.write(
|
|
str(output_dir / (utt_id + ".wav")),
|
|
wav.numpy(),
|
|
samplerate=am_config.fs)
|
|
print(f"{utt_id} done!")
|
|
|
|
|
|
def main():
|
|
# parse args and config and redirect to train_sp
|
|
parser = argparse.ArgumentParser(
|
|
description="Synthesize with acoustic model & vocoder")
|
|
# acoustic model
|
|
parser.add_argument(
|
|
'--am',
|
|
type=str,
|
|
default='fastspeech2_csmsc',
|
|
choices=[
|
|
'speedyspeech_csmsc', 'fastspeech2_csmsc', 'fastspeech2_ljspeech',
|
|
'fastspeech2_aishell3', 'fastspeech2_vctk'
|
|
],
|
|
help='Choose acoustic model type of tts task.')
|
|
parser.add_argument(
|
|
'--am_config',
|
|
type=str,
|
|
default=None,
|
|
help='Config of acoustic model. Use deault config when it is None.')
|
|
parser.add_argument(
|
|
'--am_ckpt',
|
|
type=str,
|
|
default=None,
|
|
help='Checkpoint file of acoustic model.')
|
|
parser.add_argument(
|
|
"--am_stat",
|
|
type=str,
|
|
default=None,
|
|
help="mean and standard deviation used to normalize spectrogram when training acoustic model."
|
|
)
|
|
parser.add_argument(
|
|
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
|
|
parser.add_argument(
|
|
"--tones_dict", type=str, default=None, help="tone vocabulary file.")
|
|
parser.add_argument(
|
|
"--speaker_dict", type=str, default=None, help="speaker id map file.")
|
|
|
|
def str2bool(str):
|
|
return True if str.lower() == 'true' else False
|
|
|
|
parser.add_argument(
|
|
"--voice-cloning",
|
|
type=str2bool,
|
|
default=False,
|
|
help="whether training voice cloning model.")
|
|
# vocoder
|
|
parser.add_argument(
|
|
'--voc',
|
|
type=str,
|
|
default='pwgan_csmsc',
|
|
choices=[
|
|
'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk',
|
|
'mb_melgan_csmsc'
|
|
],
|
|
help='Choose vocoder type of tts task.')
|
|
|
|
parser.add_argument(
|
|
'--voc_config',
|
|
type=str,
|
|
default=None,
|
|
help='Config of voc. Use deault config when it is None.')
|
|
parser.add_argument(
|
|
'--voc_ckpt', type=str, default=None, help='Checkpoint file of voc.')
|
|
parser.add_argument(
|
|
"--voc_stat",
|
|
type=str,
|
|
default=None,
|
|
help="mean and standard deviation used to normalize spectrogram when training voc."
|
|
)
|
|
# other
|
|
parser.add_argument(
|
|
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
|
parser.add_argument("--test_metadata", type=str, help="test metadata.")
|
|
parser.add_argument("--output_dir", type=str, help="output dir.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.ngpu == 0:
|
|
paddle.set_device("cpu")
|
|
elif args.ngpu > 0:
|
|
paddle.set_device("gpu")
|
|
else:
|
|
print("ngpu should >= 0 !")
|
|
|
|
evaluate(args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|