You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/exps/u2_st/model.py

677 lines
27 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains U2 model."""
import json
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Optional
import numpy as np
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader
from yacs.config import CfgNode
from deepspeech.io.collator_st import KaldiPrePorocessedCollator
from deepspeech.io.collator_st import SpeechCollator
from deepspeech.io.collator_st import TripletKaldiPrePorocessedCollator
from deepspeech.io.collator_st import TripletSpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.dataset import TripletManifestDataset
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.sampler import SortagradDistributedBatchSampler
from deepspeech.models.u2_st import U2STModel
from deepspeech.training.gradclip import ClipGradByGlobalNormWithLog
from deepspeech.training.scheduler import WarmupLR
from deepspeech.training.trainer import Trainer
from deepspeech.utils import bleu_score
from deepspeech.utils import ctc_utils
from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
from deepspeech.utils import text_grid
from deepspeech.utils import utility
from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
class U2STTrainer(Trainer):
@classmethod
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
# training config
default = CfgNode(
dict(
n_epoch=50, # train epochs
log_interval=100, # steps
accum_grad=1, # accum grad by # steps
global_grad_clip=5.0, # the global norm clip
))
default.optim = 'adam'
default.optim_conf = CfgNode(
dict(
lr=5e-4, # learning rate
weight_decay=1e-6, # the coeff of weight decay
))
default.scheduler = 'warmuplr'
default.scheduler_conf = CfgNode(
dict(
warmup_steps=25000,
lr_decay=1.0, # learning rate decay
))
if config is not None:
config.merge_from_other_cfg(default)
return default
def __init__(self, config, args):
super().__init__(config, args)
def train_batch(self, batch_index, batch_data, msg):
train_conf = self.config.training
start = time.time()
utt, audio, audio_len, text, text_len = batch_data
if isinstance(text, list) and isinstance(text_len, list):
# joint training with ASR. Two decoding texts [translation, transcription]
text, text_transcript = text
text_len, text_transcript_len = text_len
loss, st_loss, attention_loss, ctc_loss = self.model(
audio, audio_len, text, text_len, text_transcript,
text_transcript_len)
else:
loss, st_loss, attention_loss, ctc_loss = self.model(
audio, audio_len, text, text_len)
# loss div by `batch_size * accum_grad`
loss /= train_conf.accum_grad
loss.backward()
layer_tools.print_grads(self.model, print_func=None)
losses_np = {'loss': float(loss) * train_conf.accum_grad}
losses_np['st_loss'] = float(st_loss)
if attention_loss:
losses_np['att_loss'] = float(attention_loss)
if ctc_loss:
losses_np['ctc_loss'] = float(ctc_loss)
if (batch_index + 1) % train_conf.accum_grad == 0:
self.optimizer.step()
self.optimizer.clear_grad()
self.lr_scheduler.step()
self.iteration += 1
iteration_time = time.time() - start
if (batch_index + 1) % train_conf.log_interval == 0:
msg += "train time: {:>.3f}s, ".format(iteration_time)
msg += "batch size: {}, ".format(self.config.collator.batch_size)
msg += "accum: {}, ".format(train_conf.accum_grad)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_np.items())
logger.info(msg)
if dist.get_rank() == 0 and self.visualizer:
losses_np_v = losses_np.copy()
losses_np_v.update({"lr": self.lr_scheduler()})
self.visualizer.add_scalars("step", losses_np_v,
self.iteration - 1)
@paddle.no_grad()
def valid(self):
self.model.eval()
logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
valid_losses = defaultdict(list)
num_seen_utts = 1
total_loss = 0.0
for i, batch in enumerate(self.valid_loader):
utt, audio, audio_len, text, text_len = batch
if isinstance(text, list) and isinstance(text_len, list):
text, text_transcript = text
text_len, text_transcript_len = text_len
loss, st_loss, attention_loss, ctc_loss = self.model(
audio, audio_len, text, text_len, text_transcript,
text_transcript_len)
else:
loss, st_loss, attention_loss, ctc_loss = self.model(
audio, audio_len, text, text_len)
if paddle.isfinite(loss):
num_utts = batch[1].shape[0]
num_seen_utts += num_utts
total_loss += float(st_loss) * num_utts
valid_losses['val_loss'].append(float(st_loss))
if attention_loss:
valid_losses['val_att_loss'].append(float(attention_loss))
if ctc_loss:
valid_losses['val_ctc_loss'].append(float(ctc_loss))
if (i + 1) % self.config.training.log_interval == 0:
valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
valid_dump['val_history_st_loss'] = total_loss / num_seen_utts
# logging
msg = f"Valid: Rank: {dist.get_rank()}, "
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in valid_dump.items())
logger.info(msg)
logger.info('Rank {} Val info st_val_loss {}'.format(
dist.get_rank(), total_loss / num_seen_utts))
return total_loss, num_seen_utts
def train(self):
"""The training process control by step."""
# !!!IMPORTANT!!!
# Try to export the model by script, if fails, we should refine
# the code to satisfy the script export requirements
# script_model = paddle.jit.to_static(self.model)
# script_model_path = str(self.checkpoint_dir / 'init')
# paddle.jit.save(script_model, script_model_path)
from_scratch = self.resume_or_scratch()
if from_scratch:
# save init model, i.e. 0 epoch
self.save(tag='init')
self.lr_scheduler.step(self.iteration)
if self.parallel:
self.train_loader.batch_sampler.set_epoch(self.epoch)
logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
while self.epoch < self.config.training.n_epoch:
self.model.train()
try:
data_start_time = time.time()
for batch_index, batch in enumerate(self.train_loader):
dataload_time = time.time() - data_start_time
msg = "Train: Rank: {}, ".format(dist.get_rank())
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
msg += "batch : {}/{}, ".format(batch_index + 1,
len(self.train_loader))
msg += "lr: {:>.8f}, ".format(self.lr_scheduler())
msg += "data time: {:>.3f}s, ".format(dataload_time)
self.train_batch(batch_index, batch, msg)
data_start_time = time.time()
except Exception as e:
logger.error(e)
raise e
total_loss, num_seen_utts = self.valid()
if dist.get_world_size() > 1:
num_seen_utts = paddle.to_tensor(num_seen_utts)
# the default operator in all_reduce function is sum.
dist.all_reduce(num_seen_utts)
total_loss = paddle.to_tensor(total_loss)
dist.all_reduce(total_loss)
cv_loss = total_loss / num_seen_utts
cv_loss = float(cv_loss)
else:
cv_loss = total_loss / num_seen_utts
logger.info(
'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
if self.visualizer:
self.visualizer.add_scalars(
'epoch', {'cv_loss': cv_loss,
'lr': self.lr_scheduler()}, self.epoch)
self.save(tag=self.epoch, infos={'val_loss': cv_loss})
self.new_epoch()
def setup_dataloader(self):
config = self.config.clone()
config.defrost()
config.collator.keep_transcription_text = False
# train/valid dataset, return token ids
Dataset = TripletManifestDataset if config.model.model_conf.asr_weight > 0. else ManifestDataset
config.data.manifest = config.data.train_manifest
train_dataset = Dataset.from_config(config)
config.data.manifest = config.data.dev_manifest
dev_dataset = Dataset.from_config(config)
if config.collator.raw_wav:
if config.model.model_conf.asr_weight > 0.:
Collator = TripletSpeechCollator
TestCollator = SpeechCollator
else:
TestCollator = Collator = SpeechCollator
# Not yet implement the mtl loader for raw_wav.
else:
if config.model.model_conf.asr_weight > 0.:
Collator = TripletKaldiPrePorocessedCollator
TestCollator = KaldiPrePorocessedCollator
else:
TestCollator = Collator = KaldiPrePorocessedCollator
collate_fn_train = Collator.from_config(config)
config.collator.augmentation_config = ""
collate_fn_dev = Collator.from_config(config)
if self.parallel:
batch_sampler = SortagradDistributedBatchSampler(
train_dataset,
batch_size=config.collator.batch_size,
num_replicas=None,
rank=None,
shuffle=True,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
train_dataset,
shuffle=True,
batch_size=config.collator.batch_size,
drop_last=True,
sortagrad=config.collator.sortagrad,
shuffle_method=config.collator.shuffle_method)
self.train_loader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn_train,
num_workers=config.collator.num_workers, )
self.valid_loader = DataLoader(
dev_dataset,
batch_size=config.collator.batch_size,
shuffle=False,
drop_last=False,
collate_fn=collate_fn_dev)
# test dataset, return raw text
config.data.manifest = config.data.test_manifest
# filter test examples, will cause less examples, but no mismatch with training
# and can use large batch size , save training time, so filter test egs now.
# config.data.min_input_len = 0.0 # second
# config.data.max_input_len = float('inf') # second
# config.data.min_output_len = 0.0 # tokens
# config.data.max_output_len = float('inf') # tokens
# config.data.min_output_input_ratio = 0.00
# config.data.max_output_input_ratio = float('inf')
test_dataset = ManifestDataset.from_config(config)
# return text ord id
config.collator.keep_transcription_text = True
config.collator.augmentation_config = ""
self.test_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
shuffle=False,
drop_last=False,
collate_fn=TestCollator.from_config(config))
# return text token id
config.collator.keep_transcription_text = False
self.align_loader = DataLoader(
test_dataset,
batch_size=config.decoding.batch_size,
shuffle=False,
drop_last=False,
collate_fn=TestCollator.from_config(config))
logger.info("Setup train/valid/test/align Dataloader!")
def setup_model(self):
config = self.config
model_conf = config.model
model_conf.defrost()
model_conf.input_dim = self.train_loader.collate_fn.feature_size
model_conf.output_dim = self.train_loader.collate_fn.vocab_size
model_conf.freeze()
model = U2STModel.from_config(model_conf)
if self.parallel:
model = paddle.DataParallel(model)
logger.info(f"{model}")
layer_tools.print_params(model, logger.info)
train_config = config.training
optim_type = train_config.optim
optim_conf = train_config.optim_conf
scheduler_type = train_config.scheduler
scheduler_conf = train_config.scheduler_conf
if scheduler_type == 'expdecaylr':
lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
learning_rate=optim_conf.lr,
gamma=scheduler_conf.lr_decay,
verbose=False)
elif scheduler_type == 'warmuplr':
lr_scheduler = WarmupLR(
learning_rate=optim_conf.lr,
warmup_steps=scheduler_conf.warmup_steps,
verbose=False)
elif scheduler_type == 'noam':
lr_scheduler = paddle.optimizer.lr.NoamDecay(
learning_rate=optim_conf.lr,
d_model=model_conf.encoder_conf.output_size,
warmup_steps=scheduler_conf.warmup_steps,
verbose=False)
else:
raise ValueError(f"Not support scheduler: {scheduler_type}")
grad_clip = ClipGradByGlobalNormWithLog(train_config.global_grad_clip)
weight_decay = paddle.regularizer.L2Decay(optim_conf.weight_decay)
if optim_type == 'adam':
optimizer = paddle.optimizer.Adam(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=weight_decay,
grad_clip=grad_clip)
else:
raise ValueError(f"Not support optim: {optim_type}")
self.model = model
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
logger.info("Setup model/optimizer/lr_scheduler!")
class U2STTester(U2STTrainer):
@classmethod
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
# decoding config
default = CfgNode(
dict(
alpha=2.5, # Coef of LM for beam search.
beta=0.3, # Coef of WC for beam search.
cutoff_prob=1.0, # Cutoff probability for pruning.
cutoff_top_n=40, # Cutoff number for pruning.
lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm', # Filepath for language model.
decoding_method='attention', # Decoding method. Options: 'attention', 'ctc_greedy_search',
# 'ctc_prefix_beam_search', 'attention_rescoring'
error_rate_type='bleu', # Error rate type for evaluation. Options `bleu`, 'char_bleu'
num_proc_bsearch=8, # # of CPUs for beam search.
beam_size=10, # Beam search width.
batch_size=16, # decoding batch size
ctc_weight=0.0, # ctc weight for attention rescoring decode mode.
decoding_chunk_size=-1, # decoding chunk size. Defaults to -1.
# <0: for decoding, use full chunk.
# >0: for decoding, use fixed chunk size as set.
# 0: used for training, it's prohibited here.
num_decoding_left_chunks=-1, # number of left chunks for decoding. Defaults to -1.
simulate_streaming=False, # simulate streaming inference. Defaults to False.
))
if config is not None:
config.merge_from_other_cfg(default)
return default
def __init__(self, config, args):
super().__init__(config, args)
def ordid2token(self, texts, texts_len):
""" ord() id to chr() chr """
trans = []
for text, n in zip(texts, texts_len):
n = n.numpy().item()
ids = text[:n]
trans.append(''.join([chr(i) for i in ids]))
return trans
def compute_translation_metrics(self,
utts,
audio,
audio_len,
texts,
texts_len,
bleu_func,
fout=None):
cfg = self.config.decoding
len_refs, num_ins = 0, 0
start_time = time.time()
text_feature = self.test_loader.collate_fn.text_feature
refs = [
"".join(chr(t) for t in text[:text_len])
for text, text_len in zip(texts, texts_len)
]
# from IPython import embed
# import os
# embed()
# os._exit(0)
hyps = self.model.decode(
audio,
audio_len,
text_feature=text_feature,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch,
ctc_weight=cfg.ctc_weight,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
decode_time = time.time() - start_time
for utt, target, result in zip(utts, refs, hyps):
len_refs += len(target.split())
num_ins += 1
if fout:
fout.write(utt + " " + result + "\n")
logger.info("\nReference: %s\nHypothesis: %s" % (target, result))
logger.info("One example BLEU = %s" %
(bleu_func([result], [[target]]).prec_str))
return dict(
hyps=hyps,
refs=refs,
bleu=bleu_func(hyps, [refs]).score,
len_refs=len_refs,
num_ins=num_ins, # num examples
num_frames=audio_len.sum().numpy().item(),
decode_time=decode_time)
@mp_tools.rank_zero_only
@paddle.no_grad()
def test(self):
assert self.args.result_file
self.model.eval()
logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")
cfg = self.config.decoding
bleu_func = bleu_score.char_bleu if cfg.error_rate_type == 'char-bleu' else bleu_score.bleu
stride_ms = self.test_loader.collate_fn.stride_ms
hyps, refs = [], []
len_refs, num_ins = 0, 0
num_frames = 0.0
num_time = 0.0
with open(self.args.result_file, 'w') as fout:
for i, batch in enumerate(self.test_loader):
metrics = self.compute_translation_metrics(
*batch, bleu_func=bleu_func, fout=fout)
hyps += metrics['hyps']
refs += metrics['refs']
bleu = metrics['bleu']
num_frames += metrics['num_frames']
num_time += metrics["decode_time"]
len_refs += metrics['len_refs']
num_ins += metrics['num_ins']
rtf = num_time / (num_frames * stride_ms)
logger.info("RTF: %f, BELU (%d) = %f" % (rtf, num_ins, bleu))
rtf = num_time / (num_frames * stride_ms)
msg = "Test: "
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
msg += "RTF: {}, ".format(rtf)
msg += "Test set [%s]: %s" % (len(hyps), str(bleu_func(hyps, [refs])))
logger.info(msg)
bleu_meta_path = os.path.splitext(self.args.result_file)[0] + '.bleu'
err_type_str = "BLEU"
with open(bleu_meta_path, 'w') as f:
data = json.dumps({
"epoch":
self.epoch,
"step":
self.iteration,
"rtf":
rtf,
err_type_str:
bleu_func(hyps, [refs]).score,
"dataset_hour": (num_frames * stride_ms) / 1000.0 / 3600.0,
"process_hour":
num_time / 1000.0 / 3600.0,
"num_examples":
num_ins,
"decode_method":
self.config.decoding.decoding_method,
})
f.write(data + '\n')
def run_test(self):
self.resume_or_scratch()
try:
self.test()
except KeyboardInterrupt:
sys.exit(-1)
@paddle.no_grad()
def align(self):
if self.config.decoding.batch_size > 1:
logger.fatal('alignment mode must be running with batch_size == 1')
sys.exit(1)
# xxx.align
assert self.args.result_file and self.args.result_file.endswith(
'.align')
self.model.eval()
logger.info(f"Align Total Examples: {len(self.align_loader.dataset)}")
stride_ms = self.align_loader.collate_fn.stride_ms
token_dict = self.align_loader.collate_fn.vocab_list
with open(self.args.result_file, 'w') as fout:
# one example in batch
for i, batch in enumerate(self.align_loader):
key, feat, feats_length, target, target_length = batch
# 1. Encoder
encoder_out, encoder_mask = self.model._forward_encoder(
feat, feats_length) # (B, maxlen, encoder_dim)
maxlen = encoder_out.size(1)
ctc_probs = self.model.ctc.log_softmax(
encoder_out) # (1, maxlen, vocab_size)
# 2. alignment
ctc_probs = ctc_probs.squeeze(0)
target = target.squeeze(0)
alignment = ctc_utils.forced_align(ctc_probs, target)
logger.info("align ids", key[0], alignment)
fout.write('{} {}\n'.format(key[0], alignment))
# 3. gen praat
# segment alignment
align_segs = text_grid.segment_alignment(alignment)
logger.info("align tokens", key[0], align_segs)
# IntervalTier, List["start end token\n"]
subsample = utility.get_subsample(self.config)
tierformat = text_grid.align_to_tierformat(
align_segs, subsample, token_dict)
# write tier
align_output_path = os.path.join(
os.path.dirname(self.args.result_file), "align")
tier_path = os.path.join(align_output_path, key[0] + ".tier")
with open(tier_path, 'w') as f:
f.writelines(tierformat)
# write textgrid
textgrid_path = os.path.join(align_output_path,
key[0] + ".TextGrid")
second_per_frame = 1. / (1000. /
stride_ms) # 25ms window, 10ms stride
second_per_example = (
len(alignment) + 1) * subsample * second_per_frame
text_grid.generate_textgrid(
maxtime=second_per_example,
intervals=tierformat,
output=textgrid_path)
def run_align(self):
self.resume_or_scratch()
try:
self.align()
except KeyboardInterrupt:
sys.exit(-1)
def load_inferspec(self):
"""infer model and input spec.
Returns:
nn.Layer: inference model
List[paddle.static.InputSpec]: input spec.
"""
from deepspeech.models.u2 import U2InferModel
infer_model = U2InferModel.from_pretrained(self.test_loader,
self.config.model.clone(),
self.args.checkpoint_path)
feat_dim = self.test_loader.collate_fn.feature_size
input_spec = [
paddle.static.InputSpec(shape=[1, None, feat_dim],
dtype='float32'), # audio, [B,T,D]
paddle.static.InputSpec(shape=[1],
dtype='int64'), # audio_length, [B]
]
return infer_model, input_spec
def export(self):
infer_model, input_spec = self.load_inferspec()
assert isinstance(input_spec, list), type(input_spec)
infer_model.eval()
static_model = paddle.jit.to_static(infer_model, input_spec=input_spec)
logger.info(f"Export code: {static_model.forward.code}")
paddle.jit.save(static_model, self.args.export_path)
def run_export(self):
try:
self.export()
except KeyboardInterrupt:
sys.exit(-1)
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
self.setup_output_dir()
self.setup_checkpointer()
self.setup_dataloader()
self.setup_model()
self.iteration = 0
self.epoch = 0
def setup_output_dir(self):
"""Create a directory used for output.
"""
# output dir
if self.args.output:
output_dir = Path(self.args.output).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
else:
output_dir = Path(
self.args.checkpoint_path).expanduser().parent.parent
output_dir.mkdir(parents=True, exist_ok=True)
self.output_dir = output_dir