|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
|
|
|
#
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
# You may obtain a copy of the License at
|
|
|
#
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
#
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
# Modified from wenet(https://github.com/wenet-e2e/wenet)
|
|
|
"""Encoder self-attention layer definition."""
|
|
|
from typing import Optional
|
|
|
from typing import Tuple
|
|
|
|
|
|
import paddle
|
|
|
from paddle import nn
|
|
|
|
|
|
from paddlespeech.s2t.modules.align import LayerNorm
|
|
|
from paddlespeech.s2t.modules.align import Linear
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
__all__ = ["TransformerEncoderLayer", "ConformerEncoderLayer"]
|
|
|
|
|
|
|
|
|
class TransformerEncoderLayer(nn.Layer):
|
|
|
"""Encoder layer module."""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
size: int,
|
|
|
self_attn: nn.Layer,
|
|
|
feed_forward: nn.Layer,
|
|
|
dropout_rate: float,
|
|
|
normalize_before: bool=True,
|
|
|
concat_after: bool=False, ):
|
|
|
"""Construct an EncoderLayer object.
|
|
|
|
|
|
Args:
|
|
|
size (int): Input dimension.
|
|
|
self_attn (nn.Layer): Self-attention module instance.
|
|
|
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
|
|
instance can be used as the argument.
|
|
|
feed_forward (nn.Layer): Feed-forward module instance.
|
|
|
`PositionwiseFeedForward`, instance can be used as the argument.
|
|
|
dropout_rate (float): Dropout rate.
|
|
|
normalize_before (bool):
|
|
|
True: use layer_norm before each sub-block.
|
|
|
False: to use layer_norm after each sub-block.
|
|
|
concat_after (bool): Whether to concat attention layer's input and
|
|
|
output.
|
|
|
True: x -> x + linear(concat(x, att(x)))
|
|
|
False: x -> x + att(x)
|
|
|
"""
|
|
|
super().__init__()
|
|
|
self.self_attn = self_attn
|
|
|
self.feed_forward = feed_forward
|
|
|
self.norm1 = LayerNorm(size, epsilon=1e-12)
|
|
|
self.norm2 = LayerNorm(size, epsilon=1e-12)
|
|
|
self.dropout = nn.Dropout(dropout_rate)
|
|
|
self.size = size
|
|
|
self.normalize_before = normalize_before
|
|
|
self.concat_after = concat_after
|
|
|
# concat_linear may be not used in forward fuction,
|
|
|
# but will be saved in the *.pt
|
|
|
self.concat_linear = Linear(size + size, size)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
x: paddle.Tensor,
|
|
|
mask: paddle.Tensor,
|
|
|
pos_emb: paddle.Tensor,
|
|
|
mask_pad: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool),
|
|
|
att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
|
|
|
cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0])
|
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
|
"""Compute encoded features.
|
|
|
Args:
|
|
|
x (paddle.Tensor): (#batch, time, size)
|
|
|
mask (paddle.Tensor): Mask tensor for the input (#batch, time,time),
|
|
|
(0, 0, 0) means fake mask.
|
|
|
pos_emb (paddle.Tensor): just for interface compatibility
|
|
|
to ConformerEncoderLayer
|
|
|
mask_pad (paddle.Tensor): does not used in transformer layer,
|
|
|
just for unified api with conformer.
|
|
|
att_cache (paddle.Tensor): Cache tensor of the KEY & VALUE
|
|
|
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
|
|
cnn_cache (paddle.Tensor): Convolution cache in conformer layer
|
|
|
(#batch=1, size, cache_t2), not used here, it's for interface
|
|
|
compatibility to ConformerEncoderLayer.
|
|
|
Returns:
|
|
|
paddle.Tensor: Output tensor (#batch, time, size).
|
|
|
paddle.Tensor: Mask tensor (#batch, time, time).
|
|
|
paddle.Tensor: att_cache tensor,
|
|
|
(#batch=1, head, cache_t1 + time, d_k * 2).
|
|
|
paddle.Tensor: cnn_cahce tensor (#batch=1, size, cache_t2).
|
|
|
"""
|
|
|
residual = x
|
|
|
if self.normalize_before:
|
|
|
x = self.norm1(x)
|
|
|
|
|
|
x_att, new_att_cache = self.self_attn(x, x, x, mask, cache=att_cache)
|
|
|
|
|
|
if self.concat_after:
|
|
|
x_concat = paddle.concat((x, x_att), axis=-1)
|
|
|
x = residual + self.concat_linear(x_concat)
|
|
|
else:
|
|
|
x = residual + self.dropout(x_att)
|
|
|
if not self.normalize_before:
|
|
|
x = self.norm1(x)
|
|
|
|
|
|
residual = x
|
|
|
if self.normalize_before:
|
|
|
x = self.norm2(x)
|
|
|
x = residual + self.dropout(self.feed_forward(x))
|
|
|
if not self.normalize_before:
|
|
|
x = self.norm2(x)
|
|
|
|
|
|
fake_cnn_cache = paddle.zeros([0, 0, 0], dtype=x.dtype)
|
|
|
return x, mask, new_att_cache, fake_cnn_cache
|
|
|
|
|
|
|
|
|
class ConformerEncoderLayer(nn.Layer):
|
|
|
"""Encoder layer module."""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
size: int,
|
|
|
self_attn: nn.Layer,
|
|
|
feed_forward: Optional[nn.Layer]=None,
|
|
|
feed_forward_macaron: Optional[nn.Layer]=None,
|
|
|
conv_module: Optional[nn.Layer]=None,
|
|
|
dropout_rate: float=0.1,
|
|
|
normalize_before: bool=True,
|
|
|
concat_after: bool=False, ):
|
|
|
"""Construct an EncoderLayer object.
|
|
|
|
|
|
Args:
|
|
|
size (int): Input dimension.
|
|
|
self_attn (nn.Layer): Self-attention module instance.
|
|
|
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
|
|
|
instance can be used as the argument.
|
|
|
feed_forward (nn.Layer): Feed-forward module instance.
|
|
|
`PositionwiseFeedForward` instance can be used as the argument.
|
|
|
feed_forward_macaron (nn.Layer): Additional feed-forward module
|
|
|
instance.
|
|
|
`PositionwiseFeedForward` instance can be used as the argument.
|
|
|
conv_module (nn.Layer): Convolution module instance.
|
|
|
`ConvlutionModule` instance can be used as the argument.
|
|
|
dropout_rate (float): Dropout rate.
|
|
|
normalize_before (bool):
|
|
|
True: use layer_norm before each sub-block.
|
|
|
False: use layer_norm after each sub-block.
|
|
|
concat_after (bool): Whether to concat attention layer's input and
|
|
|
output.
|
|
|
True: x -> x + linear(concat(x, att(x)))
|
|
|
False: x -> x + att(x)
|
|
|
"""
|
|
|
super().__init__()
|
|
|
self.self_attn = self_attn
|
|
|
self.feed_forward = feed_forward
|
|
|
self.feed_forward_macaron = feed_forward_macaron
|
|
|
self.conv_module = conv_module
|
|
|
self.norm_ff = LayerNorm(size, epsilon=1e-12) # for the FNN module
|
|
|
self.norm_mha = LayerNorm(size, epsilon=1e-12) # for the MHA module
|
|
|
if feed_forward_macaron is not None:
|
|
|
self.norm_ff_macaron = LayerNorm(size, epsilon=1e-12)
|
|
|
self.ff_scale = 0.5
|
|
|
else:
|
|
|
self.ff_scale = 1.0
|
|
|
if self.conv_module is not None:
|
|
|
self.norm_conv = LayerNorm(
|
|
|
size, epsilon=1e-12) # for the CNN module
|
|
|
self.norm_final = LayerNorm(
|
|
|
size, epsilon=1e-12) # for the final output of the block
|
|
|
self.dropout = nn.Dropout(dropout_rate)
|
|
|
self.size = size
|
|
|
self.normalize_before = normalize_before
|
|
|
self.concat_after = concat_after
|
|
|
if self.concat_after:
|
|
|
self.concat_linear = Linear(size + size, size)
|
|
|
else:
|
|
|
self.concat_linear = nn.Identity()
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
x: paddle.Tensor,
|
|
|
mask: paddle.Tensor,
|
|
|
pos_emb: paddle.Tensor,
|
|
|
mask_pad: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool),
|
|
|
att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
|
|
|
cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0])
|
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
|
"""Compute encoded features.
|
|
|
Args:
|
|
|
x (paddle.Tensor): Input tensor (#batch, time, size).
|
|
|
mask (paddle.Tensor): Mask tensor for the input (#batch, time, time).
|
|
|
(0,0,0) means fake mask.
|
|
|
pos_emb (paddle.Tensor): postional encoding, must not be None
|
|
|
for ConformerEncoderLayer
|
|
|
mask_pad (paddle.Tensor): batch padding mask used for conv module.
|
|
|
(#batch, 1,time), (0, 0, 0) means fake mask.
|
|
|
att_cache (paddle.Tensor): Cache tensor of the KEY & VALUE
|
|
|
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
|
|
|
cnn_cache (paddle.Tensor): Convolution cache in conformer layer
|
|
|
(1, #batch=1, size, cache_t2). First dim will not be used, just
|
|
|
for dy2st.
|
|
|
Returns:
|
|
|
paddle.Tensor: Output tensor (#batch, time, size).
|
|
|
paddle.Tensor: Mask tensor (#batch, time, time).
|
|
|
paddle.Tensor: att_cache tensor,
|
|
|
(#batch=1, head, cache_t1 + time, d_k * 2).
|
|
|
paddle.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
|
|
|
"""
|
|
|
# (1, #batch=1, size, cache_t2) -> (#batch=1, size, cache_t2)
|
|
|
cnn_cache = paddle.squeeze(cnn_cache, axis=0)
|
|
|
|
|
|
# whether to use macaron style FFN
|
|
|
if self.feed_forward_macaron is not None:
|
|
|
residual = x
|
|
|
if self.normalize_before:
|
|
|
x = self.norm_ff_macaron(x)
|
|
|
x = residual + self.ff_scale * self.dropout(
|
|
|
self.feed_forward_macaron(x))
|
|
|
if not self.normalize_before:
|
|
|
x = self.norm_ff_macaron(x)
|
|
|
|
|
|
# multi-headed self-attention module
|
|
|
residual = x
|
|
|
if self.normalize_before:
|
|
|
x = self.norm_mha(x)
|
|
|
|
|
|
x_att, new_att_cache = self.self_attn(
|
|
|
x, x, x, mask, pos_emb, cache=att_cache)
|
|
|
|
|
|
if self.concat_after:
|
|
|
x_concat = paddle.concat((x, x_att), axis=-1)
|
|
|
x = residual + self.concat_linear(x_concat)
|
|
|
else:
|
|
|
x = residual + self.dropout(x_att)
|
|
|
|
|
|
if not self.normalize_before:
|
|
|
x = self.norm_mha(x)
|
|
|
|
|
|
# convolution module
|
|
|
# Fake new cnn cache here, and then change it in conv_module
|
|
|
new_cnn_cache = paddle.zeros([0, 0, 0], dtype=x.dtype)
|
|
|
if self.conv_module is not None:
|
|
|
residual = x
|
|
|
if self.normalize_before:
|
|
|
x = self.norm_conv(x)
|
|
|
|
|
|
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
|
|
|
x = residual + self.dropout(x)
|
|
|
|
|
|
if not self.normalize_before:
|
|
|
x = self.norm_conv(x)
|
|
|
|
|
|
# feed forward module
|
|
|
residual = x
|
|
|
if self.normalize_before:
|
|
|
x = self.norm_ff(x)
|
|
|
|
|
|
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
|
|
|
|
|
|
if not self.normalize_before:
|
|
|
x = self.norm_ff(x)
|
|
|
|
|
|
if self.conv_module is not None:
|
|
|
x = self.norm_final(x)
|
|
|
|
|
|
return x, mask, new_att_cache, new_cnn_cache
|