You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
9.1 KiB
227 lines
9.1 KiB
"""Beam search parameters tuning for DeepSpeech2 model."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import sys
|
|
import os
|
|
import numpy as np
|
|
import argparse
|
|
import functools
|
|
import gzip
|
|
import logging
|
|
import paddle.v2 as paddle
|
|
import _init_paths
|
|
from data_utils.data import DataGenerator
|
|
from decoders.swig_wrapper import Scorer
|
|
from decoders.swig_wrapper import ctc_beam_search_decoder_batch
|
|
from model_utils.model import deep_speech_v2_network
|
|
from utils.error_rate import wer, cer
|
|
from utils.utility import add_arguments, print_arguments
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
add_arg = functools.partial(add_arguments, argparser=parser)
|
|
# yapf: disable
|
|
add_arg('num_batches', int, -1, "# of batches tuning on. "
|
|
"Default -1, on whole dev set.")
|
|
add_arg('batch_size', int, 256, "# of samples per batch.")
|
|
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
|
|
add_arg('beam_size', int, 500, "Beam search width.")
|
|
add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.")
|
|
add_arg('num_proc_data', int, 8, "# of CPUs for data preprocessing.")
|
|
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
|
|
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
|
|
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
|
|
add_arg('num_alphas', int, 45, "# of alpha candidates for tuning.")
|
|
add_arg('num_betas', int, 8, "# of beta candidates for tuning.")
|
|
add_arg('alpha_from', float, 1.0, "Where alpha starts tuning from.")
|
|
add_arg('alpha_to', float, 3.2, "Where alpha ends tuning with.")
|
|
add_arg('beta_from', float, 0.1, "Where beta starts tuning from.")
|
|
add_arg('beta_to', float, 0.45, "Where beta ends tuning with.")
|
|
add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.")
|
|
add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.")
|
|
add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.")
|
|
add_arg('use_gpu', bool, True, "Use GPU or not.")
|
|
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
|
|
"bi-directional RNNs. Not for GRU.")
|
|
add_arg('tune_manifest', str,
|
|
'data/librispeech/manifest.dev-clean',
|
|
"Filepath of manifest to tune.")
|
|
add_arg('mean_std_path', str,
|
|
'data/librispeech/mean_std.npz',
|
|
"Filepath of normalizer's mean & std.")
|
|
add_arg('vocab_path', str,
|
|
'data/librispeech/vocab.txt',
|
|
"Filepath of vocabulary.")
|
|
add_arg('lang_model_path', str,
|
|
'models/lm/common_crawl_00.prune01111.trie.klm',
|
|
"Filepath for language model.")
|
|
add_arg('model_path', str,
|
|
'./checkpoints/libri/params.latest.tar.gz',
|
|
"If None, the training starts from scratch, "
|
|
"otherwise, it resumes from the pre-trained model.")
|
|
add_arg('error_rate_type', str,
|
|
'wer',
|
|
"Error rate type for evaluation.",
|
|
choices=['wer', 'cer'])
|
|
add_arg('specgram_type', str,
|
|
'linear',
|
|
"Audio feature type. Options: linear, mfcc.",
|
|
choices=['linear', 'mfcc'])
|
|
# yapf: disable
|
|
args = parser.parse_args()
|
|
|
|
|
|
logging.basicConfig(
|
|
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
|
|
|
|
def tune():
|
|
"""Tune parameters alpha and beta incrementally."""
|
|
if not args.num_alphas >= 0:
|
|
raise ValueError("num_alphas must be non-negative!")
|
|
if not args.num_betas >= 0:
|
|
raise ValueError("num_betas must be non-negative!")
|
|
|
|
data_generator = DataGenerator(
|
|
vocab_filepath=args.vocab_path,
|
|
mean_std_filepath=args.mean_std_path,
|
|
augmentation_config='{}',
|
|
specgram_type=args.specgram_type,
|
|
num_threads=args.num_proc_data,
|
|
keep_transcription_text=True)
|
|
|
|
audio_data = paddle.layer.data(
|
|
name="audio_spectrogram",
|
|
type=paddle.data_type.dense_array(161 * 161))
|
|
text_data = paddle.layer.data(
|
|
name="transcript_text",
|
|
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
|
|
|
|
output_probs, _ = deep_speech_v2_network(
|
|
audio_data=audio_data,
|
|
text_data=text_data,
|
|
dict_size=data_generator.vocab_size,
|
|
num_conv_layers=args.num_conv_layers,
|
|
num_rnn_layers=args.num_rnn_layers,
|
|
rnn_size=args.rnn_layer_size,
|
|
use_gru=args.use_gru,
|
|
share_rnn_weights=args.share_rnn_weights)
|
|
|
|
batch_reader = data_generator.batch_reader_creator(
|
|
manifest_path=args.tune_manifest,
|
|
batch_size=args.batch_size,
|
|
sortagrad=False,
|
|
shuffle_method=None)
|
|
|
|
# load parameters
|
|
if not os.path.isfile(args.model_path):
|
|
raise IOError("Invaid model path: %s" % args.model_path)
|
|
parameters = paddle.parameters.Parameters.from_tar(
|
|
gzip.open(args.model_path))
|
|
|
|
inferer = paddle.inference.Inference(
|
|
output_layer=output_probs, parameters=parameters)
|
|
# decoders only accept string encoded in utf-8
|
|
vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list]
|
|
|
|
# init logger
|
|
logger = logging.getLogger("")
|
|
logger.setLevel(level=logging.INFO)
|
|
# init external scorer
|
|
logger.info("begin to initialize the external scorer for tuning")
|
|
if not os.path.isfile(args.lang_model_path):
|
|
raise IOError("Invaid language model path: %s" % args.lang_model_path)
|
|
ext_scorer = Scorer(
|
|
alpha=args.alpha_from,
|
|
beta=args.beta_from,
|
|
model_path=args.lang_model_path,
|
|
vocabulary=vocab_list)
|
|
logger.info("language model: "
|
|
"is_character_based = %d," % ext_scorer.is_character_based() +
|
|
" max_order = %d," % ext_scorer.get_max_order() +
|
|
" dict_size = %d" % ext_scorer.get_dict_size())
|
|
logger.info("end initializing scorer. Start tuning ...")
|
|
|
|
error_rate_func = cer if args.error_rate_type == 'cer' else wer
|
|
# create grid for search
|
|
cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas)
|
|
cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas)
|
|
params_grid = [(alpha, beta) for alpha in cand_alphas
|
|
for beta in cand_betas]
|
|
|
|
err_sum = [0.0 for i in xrange(len(params_grid))]
|
|
err_ave = [0.0 for i in xrange(len(params_grid))]
|
|
num_ins, cur_batch = 0, 0
|
|
## incremental tuning parameters over multiple batches
|
|
for infer_data in batch_reader():
|
|
if (args.num_batches >= 0) and (cur_batch >= args.num_batches):
|
|
break
|
|
infer_results = inferer.infer(input=infer_data)
|
|
|
|
num_steps = len(infer_results) // len(infer_data)
|
|
probs_split = [
|
|
infer_results[i * num_steps:(i + 1) * num_steps]
|
|
for i in xrange(len(infer_data))
|
|
]
|
|
|
|
target_transcripts = [transcript for _, transcript in infer_data]
|
|
|
|
num_ins += len(target_transcripts)
|
|
# grid search
|
|
for index, (alpha, beta) in enumerate(params_grid):
|
|
# reset alpha & beta
|
|
ext_scorer.reset_params(alpha, beta)
|
|
beam_search_results = ctc_beam_search_decoder_batch(
|
|
probs_split=probs_split,
|
|
vocabulary=vocab_list,
|
|
beam_size=args.beam_size,
|
|
num_processes=args.num_proc_bsearch,
|
|
cutoff_prob=args.cutoff_prob,
|
|
cutoff_top_n=args.cutoff_top_n,
|
|
ext_scoring_func=ext_scorer, )
|
|
|
|
result_transcripts = [res[0][1] for res in beam_search_results]
|
|
for target, result in zip(target_transcripts, result_transcripts):
|
|
err_sum[index] += error_rate_func(target, result)
|
|
err_ave[index] = err_sum[index] / num_ins
|
|
if index % 2 == 0:
|
|
sys.stdout.write('.')
|
|
sys.stdout.flush()
|
|
|
|
# output on-line tuning result at the end of current batch
|
|
err_ave_min = min(err_ave)
|
|
min_index = err_ave.index(err_ave_min)
|
|
print("\nBatch %d [%d/?], current opt (alpha, beta) = (%s, %s), "
|
|
" min [%s] = %f" %(cur_batch, num_ins,
|
|
"%.3f" % params_grid[min_index][0],
|
|
"%.3f" % params_grid[min_index][1],
|
|
args.error_rate_type, err_ave_min))
|
|
cur_batch += 1
|
|
|
|
# output WER/CER at every (alpha, beta)
|
|
print("\nFinal %s:\n" % args.error_rate_type)
|
|
for index in xrange(len(params_grid)):
|
|
print("(alpha, beta) = (%s, %s), [%s] = %f"
|
|
% ("%.3f" % params_grid[index][0], "%.3f" % params_grid[index][1],
|
|
args.error_rate_type, err_ave[index]))
|
|
|
|
err_ave_min = min(err_ave)
|
|
min_index = err_ave.index(err_ave_min)
|
|
print("\nFinish tuning on %d batches, final opt (alpha, beta) = (%s, %s)"
|
|
% (args.num_batches, "%.3f" % params_grid[min_index][0],
|
|
"%.3f" % params_grid[min_index][1]))
|
|
|
|
logger.info("finish tuning")
|
|
|
|
|
|
def main():
|
|
print_arguments(args)
|
|
paddle.init(use_gpu=args.use_gpu,
|
|
rnn_use_batch=True,
|
|
trainer_count=args.trainer_count)
|
|
tune()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|