You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/fastspeech2/fastspeech2.py

1222 lines
49 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
"""Fastspeech2 related modules for paddle"""
from typing import Dict
from typing import List
from typing import Sequence
from typing import Tuple
from typing import Union
import numpy as np
import paddle
import paddle.nn.functional as F
from paddle import nn
from typeguard import check_argument_types
from paddlespeech.t2s.modules.adversarial_loss.gradient_reversal import GradientReversalLayer
from paddlespeech.t2s.modules.adversarial_loss.speaker_classifier import SpeakerClassifier
from paddlespeech.t2s.modules.nets_utils import initialize
from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask
from paddlespeech.t2s.modules.nets_utils import make_pad_mask
from paddlespeech.t2s.modules.predictor.duration_predictor import DurationPredictor
from paddlespeech.t2s.modules.predictor.duration_predictor import DurationPredictorLoss
from paddlespeech.t2s.modules.predictor.length_regulator import LengthRegulator
from paddlespeech.t2s.modules.predictor.variance_predictor import VariancePredictor
from paddlespeech.t2s.modules.tacotron2.decoder import Postnet
from paddlespeech.t2s.modules.transformer.encoder import CNNDecoder
from paddlespeech.t2s.modules.transformer.encoder import CNNPostnet
from paddlespeech.t2s.modules.transformer.encoder import ConformerEncoder
from paddlespeech.t2s.modules.transformer.encoder import TransformerEncoder
class FastSpeech2(nn.Layer):
"""FastSpeech2 module.
This is a module of FastSpeech2 described in `FastSpeech 2: Fast and
High-Quality End-to-End Text to Speech`_. Instead of quantized pitch and
energy, we use token-averaged value introduced in `FastPitch: Parallel
Text-to-speech with Pitch Prediction`_.
.. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`:
https://arxiv.org/abs/2006.04558
.. _`FastPitch: Parallel Text-to-speech with Pitch Prediction`:
https://arxiv.org/abs/2006.06873
Args:
Returns:
"""
def __init__(
self,
# network structure related
idim: int,
odim: int,
adim: int=384,
aheads: int=4,
elayers: int=6,
eunits: int=1536,
dlayers: int=6,
dunits: int=1536,
postnet_layers: int=5,
postnet_chans: int=512,
postnet_filts: int=5,
postnet_dropout_rate: float=0.5,
positionwise_layer_type: str="conv1d",
positionwise_conv_kernel_size: int=1,
use_scaled_pos_enc: bool=True,
use_batch_norm: bool=True,
encoder_normalize_before: bool=True,
decoder_normalize_before: bool=True,
encoder_concat_after: bool=False,
decoder_concat_after: bool=False,
reduction_factor: int=1,
encoder_type: str="transformer",
decoder_type: str="transformer",
# for transformer
transformer_enc_dropout_rate: float=0.1,
transformer_enc_positional_dropout_rate: float=0.1,
transformer_enc_attn_dropout_rate: float=0.1,
transformer_dec_dropout_rate: float=0.1,
transformer_dec_positional_dropout_rate: float=0.1,
transformer_dec_attn_dropout_rate: float=0.1,
transformer_activation_type: str="relu",
# for conformer
conformer_pos_enc_layer_type: str="rel_pos",
conformer_self_attn_layer_type: str="rel_selfattn",
conformer_activation_type: str="swish",
use_macaron_style_in_conformer: bool=True,
use_cnn_in_conformer: bool=True,
zero_triu: bool=False,
conformer_enc_kernel_size: int=7,
conformer_dec_kernel_size: int=31,
# for CNN Decoder
cnn_dec_dropout_rate: float=0.2,
cnn_postnet_dropout_rate: float=0.2,
cnn_postnet_resblock_kernel_sizes: List[int]=[256, 256],
cnn_postnet_kernel_size: int=5,
cnn_decoder_embedding_dim: int=256,
# duration predictor
duration_predictor_layers: int=2,
duration_predictor_chans: int=384,
duration_predictor_kernel_size: int=3,
duration_predictor_dropout_rate: float=0.1,
# energy predictor
energy_predictor_layers: int=2,
energy_predictor_chans: int=384,
energy_predictor_kernel_size: int=3,
energy_predictor_dropout: float=0.5,
energy_embed_kernel_size: int=9,
energy_embed_dropout: float=0.5,
stop_gradient_from_energy_predictor: bool=False,
# pitch predictor
pitch_predictor_layers: int=2,
pitch_predictor_chans: int=384,
pitch_predictor_kernel_size: int=3,
pitch_predictor_dropout: float=0.5,
pitch_embed_kernel_size: int=9,
pitch_embed_dropout: float=0.5,
stop_gradient_from_pitch_predictor: bool=False,
# spk emb
spk_num: int=None,
spk_embed_dim: int=None,
spk_embed_integration_type: str="add",
# tone emb
tone_num: int=None,
tone_embed_dim: int=None,
tone_embed_integration_type: str="add",
# training related
init_type: str="xavier_uniform",
init_enc_alpha: float=1.0,
init_dec_alpha: float=1.0,
# speaker classifier
enable_speaker_classifier: bool=False,
hidden_sc_dim: int=256, ):
"""Initialize FastSpeech2 module.
Args:
idim (int):
Dimension of the inputs.
odim (int):
Dimension of the outputs.
adim (int):
Attention dimension.
aheads (int):
Number of attention heads.
elayers (int):
Number of encoder layers.
eunits (int):
Number of encoder hidden units.
dlayers (int):
Number of decoder layers.
dunits (int):
Number of decoder hidden units.
postnet_layers (int):
Number of postnet layers.
postnet_chans (int):
Number of postnet channels.
postnet_filts (int):
Kernel size of postnet.
postnet_dropout_rate (float):
Dropout rate in postnet.
use_scaled_pos_enc (bool):
Whether to use trainable scaled pos encoding.
use_batch_norm (bool):
Whether to use batch normalization in encoder prenet.
encoder_normalize_before (bool):
Whether to apply layernorm layer before encoder block.
decoder_normalize_before (bool):
Whether to apply layernorm layer before decoder block.
encoder_concat_after (bool):
Whether to concatenate attention layer's input and output in encoder.
decoder_concat_after (bool):
Whether to concatenate attention layer's input and output in decoder.
reduction_factor (int):
Reduction factor.
encoder_type (str):
Encoder type ("transformer" or "conformer").
decoder_type (str):
Decoder type ("transformer" or "conformer").
transformer_enc_dropout_rate (float):
Dropout rate in encoder except attention and positional encoding.
transformer_enc_positional_dropout_rate (float):
Dropout rate after encoder positional encoding.
transformer_enc_attn_dropout_rate (float):
Dropout rate in encoder self-attention module.
transformer_dec_dropout_rate (float):
Dropout rate in decoder except attention & positional encoding.
transformer_dec_positional_dropout_rate (float):
Dropout rate after decoder positional encoding.
transformer_dec_attn_dropout_rate (float):
Dropout rate in decoder self-attention module.
transformer_activation_type (str):
Activation function type in transformer.
conformer_pos_enc_layer_type (str):
Pos encoding layer type in conformer.
conformer_self_attn_layer_type (str):
Self-attention layer type in conformer
conformer_activation_type (str):
Activation function type in conformer.
use_macaron_style_in_conformer (bool):
Whether to use macaron style FFN.
use_cnn_in_conformer (bool):
Whether to use CNN in conformer.
zero_triu (bool):
Whether to use zero triu in relative self-attention module.
conformer_enc_kernel_size (int):
Kernel size of encoder conformer.
conformer_dec_kernel_size (int):
Kernel size of decoder conformer.
duration_predictor_layers (int):
Number of duration predictor layers.
duration_predictor_chans (int):
Number of duration predictor channels.
duration_predictor_kernel_size (int):
Kernel size of duration predictor.
duration_predictor_dropout_rate (float):
Dropout rate in duration predictor.
pitch_predictor_layers (int):
Number of pitch predictor layers.
pitch_predictor_chans (int):
Number of pitch predictor channels.
pitch_predictor_kernel_size (int):
Kernel size of pitch predictor.
pitch_predictor_dropout_rate (float):
Dropout rate in pitch predictor.
pitch_embed_kernel_size (float):
Kernel size of pitch embedding.
pitch_embed_dropout_rate (float):
Dropout rate for pitch embedding.
stop_gradient_from_pitch_predictor (bool):
Whether to stop gradient from pitch predictor to encoder.
energy_predictor_layers (int):
Number of energy predictor layers.
energy_predictor_chans (int):
Number of energy predictor channels.
energy_predictor_kernel_size (int):
Kernel size of energy predictor.
energy_predictor_dropout_rate (float):
Dropout rate in energy predictor.
energy_embed_kernel_size (float):
Kernel size of energy embedding.
energy_embed_dropout_rate (float):
Dropout rate for energy embedding.
stop_gradient_from_energy_predictor (bool):
Whether to stop gradient from energy predictor to encoder.
spk_num (Optional[int]):
Number of speakers. If not None, assume that the spk_embed_dim is not None,
spk_ids will be provided as the input and use spk_embedding_table.
spk_embed_dim (Optional[int]):
Speaker embedding dimension. If not None,
assume that spk_emb will be provided as the input or spk_num is not None.
spk_embed_integration_type (str):
How to integrate speaker embedding.
tone_num (Optional[int]):
Number of tones. If not None, assume that the
tone_ids will be provided as the input and use tone_embedding_table.
tone_embed_dim (Optional[int]):
Tone embedding dimension. If not None, assume that tone_num is not None.
tone_embed_integration_type (str):
How to integrate tone embedding.
init_type (str):
How to initialize transformer parameters.
init_enc_alpha (float):
Initial value of alpha in scaled pos encoding of the encoder.
init_dec_alpha (float):
Initial value of alpha in scaled pos encoding of the decoder.
enable_speaker_classifier (bool):
Whether to use speaker classifier module
hidden_sc_dim (int):
The hidden layer dim of speaker classifier
"""
assert check_argument_types()
super().__init__()
# store hyperparameters
self.odim = odim
self.reduction_factor = reduction_factor
self.encoder_type = encoder_type
self.decoder_type = decoder_type
self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor
self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor
self.use_scaled_pos_enc = use_scaled_pos_enc
self.hidden_sc_dim = hidden_sc_dim
self.spk_num = spk_num
self.enable_speaker_classifier = enable_speaker_classifier
self.spk_embed_dim = spk_embed_dim
if self.spk_embed_dim is not None:
self.spk_embed_integration_type = spk_embed_integration_type
self.tone_embed_dim = tone_embed_dim
if self.tone_embed_dim is not None:
self.tone_embed_integration_type = tone_embed_integration_type
# use idx 0 as padding idx
self.padding_idx = 0
# initialize parameters
initialize(self, init_type)
if spk_num and self.spk_embed_dim:
self.spk_embedding_table = nn.Embedding(
num_embeddings=spk_num,
embedding_dim=self.spk_embed_dim,
padding_idx=self.padding_idx)
if self.tone_embed_dim is not None:
self.tone_embedding_table = nn.Embedding(
num_embeddings=tone_num,
embedding_dim=self.tone_embed_dim,
padding_idx=self.padding_idx)
# get positional encoding layer type
transformer_pos_enc_layer_type = "scaled_abs_pos" if self.use_scaled_pos_enc else "abs_pos"
# define encoder
encoder_input_layer = nn.Embedding(
num_embeddings=idim,
embedding_dim=adim,
padding_idx=self.padding_idx)
if encoder_type == "transformer":
self.encoder = TransformerEncoder(
idim=idim,
attention_dim=adim,
attention_heads=aheads,
linear_units=eunits,
num_blocks=elayers,
input_layer=encoder_input_layer,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
pos_enc_layer_type=transformer_pos_enc_layer_type,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
activation_type=transformer_activation_type)
elif encoder_type == "conformer":
self.encoder = ConformerEncoder(
idim=idim,
attention_dim=adim,
attention_heads=aheads,
linear_units=eunits,
num_blocks=elayers,
input_layer=encoder_input_layer,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
pos_enc_layer_type=conformer_pos_enc_layer_type,
selfattention_layer_type=conformer_self_attn_layer_type,
activation_type=conformer_activation_type,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_enc_kernel_size,
zero_triu=zero_triu, )
else:
raise ValueError(f"{encoder_type} is not supported.")
# define additional projection for speaker embedding
if self.spk_embed_dim is not None:
if self.spk_embed_integration_type == "add":
self.spk_projection = nn.Linear(self.spk_embed_dim, adim)
else:
self.spk_projection = nn.Linear(adim + self.spk_embed_dim, adim)
# define additional projection for tone embedding
if self.tone_embed_dim is not None:
if self.tone_embed_integration_type == "add":
self.tone_projection = nn.Linear(self.tone_embed_dim, adim)
else:
self.tone_projection = nn.Linear(adim + self.tone_embed_dim,
adim)
if self.spk_num and self.enable_speaker_classifier:
# set lambda = 1
self.grad_reverse = GradientReversalLayer(1)
self.speaker_classifier = SpeakerClassifier(
idim=adim, hidden_sc_dim=self.hidden_sc_dim, spk_num=spk_num)
# define duration predictor
self.duration_predictor = DurationPredictor(
idim=adim,
n_layers=duration_predictor_layers,
n_chans=duration_predictor_chans,
kernel_size=duration_predictor_kernel_size,
dropout_rate=duration_predictor_dropout_rate, )
# define pitch predictor
self.pitch_predictor = VariancePredictor(
idim=adim,
n_layers=pitch_predictor_layers,
n_chans=pitch_predictor_chans,
kernel_size=pitch_predictor_kernel_size,
dropout_rate=pitch_predictor_dropout, )
# We use continuous pitch + FastPitch style avg
self.pitch_embed = nn.Sequential(
nn.Conv1D(
in_channels=1,
out_channels=adim,
kernel_size=pitch_embed_kernel_size,
padding=(pitch_embed_kernel_size - 1) // 2, ),
nn.Dropout(pitch_embed_dropout), )
# define energy predictor
self.energy_predictor = VariancePredictor(
idim=adim,
n_layers=energy_predictor_layers,
n_chans=energy_predictor_chans,
kernel_size=energy_predictor_kernel_size,
dropout_rate=energy_predictor_dropout, )
# We use continuous enegy + FastPitch style avg
self.energy_embed = nn.Sequential(
nn.Conv1D(
in_channels=1,
out_channels=adim,
kernel_size=energy_embed_kernel_size,
padding=(energy_embed_kernel_size - 1) // 2, ),
nn.Dropout(energy_embed_dropout), )
# define length regulator
self.length_regulator = LengthRegulator()
# define decoder
# NOTE: we use encoder as decoder
# because fastspeech's decoder is the same as encoder
if decoder_type == "transformer":
self.decoder = TransformerEncoder(
idim=0,
attention_dim=adim,
attention_heads=aheads,
linear_units=dunits,
num_blocks=dlayers,
# in decoder, don't need layer before pos_enc_class (we use embedding here in encoder)
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
pos_enc_layer_type=transformer_pos_enc_layer_type,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
activation_type=conformer_activation_type, )
elif decoder_type == "conformer":
self.decoder = ConformerEncoder(
idim=0,
attention_dim=adim,
attention_heads=aheads,
linear_units=dunits,
num_blocks=dlayers,
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
pos_enc_layer_type=conformer_pos_enc_layer_type,
selfattention_layer_type=conformer_self_attn_layer_type,
activation_type=conformer_activation_type,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_dec_kernel_size, )
elif decoder_type == 'cnndecoder':
self.decoder = CNNDecoder(
emb_dim=adim,
odim=odim,
kernel_size=cnn_postnet_kernel_size,
dropout_rate=cnn_dec_dropout_rate,
resblock_kernel_sizes=cnn_postnet_resblock_kernel_sizes)
else:
raise ValueError(f"{decoder_type} is not supported.")
# define final projection
self.feat_out = nn.Linear(adim, odim * reduction_factor)
# define postnet
if decoder_type == 'cnndecoder':
self.postnet = CNNPostnet(
odim=odim,
kernel_size=cnn_postnet_kernel_size,
dropout_rate=cnn_postnet_dropout_rate,
resblock_kernel_sizes=cnn_postnet_resblock_kernel_sizes)
else:
self.postnet = (None if postnet_layers == 0 else Postnet(
idim=idim,
odim=odim,
n_layers=postnet_layers,
n_chans=postnet_chans,
n_filts=postnet_filts,
use_batch_norm=use_batch_norm,
dropout_rate=postnet_dropout_rate, ))
nn.initializer.set_global_initializer(None)
self._reset_parameters(
init_enc_alpha=init_enc_alpha,
init_dec_alpha=init_dec_alpha, )
def forward(
self,
text: paddle.Tensor,
text_lengths: paddle.Tensor,
speech: paddle.Tensor,
speech_lengths: paddle.Tensor,
durations: paddle.Tensor,
pitch: paddle.Tensor,
energy: paddle.Tensor,
tone_id: paddle.Tensor=None,
spk_emb: paddle.Tensor=None,
spk_id: paddle.Tensor=None
) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
"""Calculate forward propagation.
Args:
text(Tensor(int64)):
Batch of padded token ids (B, Tmax).
text_lengths(Tensor(int64)):
Batch of lengths of each input (B,).
speech(Tensor):
Batch of padded target features (B, Lmax, odim).
speech_lengths(Tensor(int64)):
Batch of the lengths of each target (B,).
durations(Tensor(int64)):
Batch of padded durations (B, Tmax).
pitch(Tensor):
Batch of padded token-averaged pitch (B, Tmax, 1).
energy(Tensor):
Batch of padded token-averaged energy (B, Tmax, 1).
tone_id(Tensor, optional(int64)):
Batch of padded tone ids (B, Tmax).
spk_emb(Tensor, optional):
Batch of speaker embeddings (B, spk_embed_dim).
spk_id(Tnesor, optional(int64)):
Batch of speaker ids (B,)
Returns:
"""
# input of embedding must be int64
xs = paddle.cast(text, 'int64')
ilens = paddle.cast(text_lengths, 'int64')
ds = paddle.cast(durations, 'int64')
olens = paddle.cast(speech_lengths, 'int64')
ys = speech
ps = pitch
es = energy
if spk_id is not None:
spk_id = paddle.cast(spk_id, 'int64')
if tone_id is not None:
tone_id = paddle.cast(tone_id, 'int64')
# forward propagation
before_outs, after_outs, d_outs, p_outs, e_outs, spk_logits = self._forward(
xs,
ilens,
olens,
ds,
ps,
es,
is_inference=False,
spk_emb=spk_emb,
spk_id=spk_id,
tone_id=tone_id)
# modify mod part of groundtruth
if self.reduction_factor > 1:
olens = olens - olens % self.reduction_factor
max_olen = max(olens)
ys = ys[:, :max_olen]
return before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits
def _forward(self,
xs: paddle.Tensor,
ilens: paddle.Tensor,
olens: paddle.Tensor=None,
ds: paddle.Tensor=None,
ps: paddle.Tensor=None,
es: paddle.Tensor=None,
is_inference: bool=False,
return_after_enc=False,
alpha: float=1.0,
spk_emb=None,
spk_id=None,
tone_id=None) -> Sequence[paddle.Tensor]:
# forward encoder
x_masks = self._source_mask(ilens)
# (B, Tmax, adim)
hs, _ = self.encoder(xs, x_masks)
if self.spk_num and self.enable_speaker_classifier and not is_inference:
hs_for_spk_cls = self.grad_reverse(hs)
spk_logits = self.speaker_classifier(hs_for_spk_cls, ilens)
else:
spk_logits = None
# integrate speaker embedding
if self.spk_embed_dim is not None:
# spk_emb has a higher priority than spk_id
if spk_emb is not None:
hs = self._integrate_with_spk_embed(hs, spk_emb)
elif spk_id is not None:
spk_emb = self.spk_embedding_table(spk_id)
hs = self._integrate_with_spk_embed(hs, spk_emb)
# integrate tone embedding
if self.tone_embed_dim is not None:
if tone_id is not None:
tone_embs = self.tone_embedding_table(tone_id)
hs = self._integrate_with_tone_embed(hs, tone_embs)
# forward duration predictor and variance predictors
d_masks = make_pad_mask(ilens)
if self.stop_gradient_from_pitch_predictor:
p_outs = self.pitch_predictor(hs.detach(), d_masks.unsqueeze(-1))
else:
p_outs = self.pitch_predictor(hs, d_masks.unsqueeze(-1))
if self.stop_gradient_from_energy_predictor:
e_outs = self.energy_predictor(hs.detach(), d_masks.unsqueeze(-1))
else:
e_outs = self.energy_predictor(hs, d_masks.unsqueeze(-1))
if is_inference:
# (B, Tmax)
if ds is not None:
d_outs = ds
else:
d_outs = self.duration_predictor.inference(hs, d_masks)
if ps is not None:
p_outs = ps
if es is not None:
e_outs = es
# use prediction in inference
# (B, Tmax, 1)
p_embs = self.pitch_embed(p_outs.transpose((0, 2, 1))).transpose(
(0, 2, 1))
e_embs = self.energy_embed(e_outs.transpose((0, 2, 1))).transpose(
(0, 2, 1))
hs = hs + e_embs + p_embs
# (B, Lmax, adim)
hs = self.length_regulator(hs, d_outs, alpha, is_inference=True)
else:
d_outs = self.duration_predictor(hs, d_masks)
# use groundtruth in training
p_embs = self.pitch_embed(ps.transpose((0, 2, 1))).transpose(
(0, 2, 1))
e_embs = self.energy_embed(es.transpose((0, 2, 1))).transpose(
(0, 2, 1))
hs = hs + e_embs + p_embs
# (B, Lmax, adim)
hs = self.length_regulator(hs, ds, is_inference=False)
# forward decoder
if olens is not None and not is_inference:
if self.reduction_factor > 1:
olens_in = paddle.to_tensor(
[olen // self.reduction_factor for olen in olens.numpy()])
else:
olens_in = olens
# (B, 1, T)
h_masks = self._source_mask(olens_in)
else:
h_masks = None
if return_after_enc:
return hs, h_masks
if self.decoder_type == 'cnndecoder':
# remove output masks for dygraph to static graph
zs = self.decoder(hs, h_masks)
before_outs = zs
else:
# (B, Lmax, adim)
zs, _ = self.decoder(hs, h_masks)
# (B, Lmax, odim)
before_outs = self.feat_out(zs).reshape(
(paddle.shape(zs)[0], -1, self.odim))
# postnet -> (B, Lmax//r * r, odim)
if self.postnet is None:
after_outs = before_outs
else:
after_outs = before_outs + self.postnet(
before_outs.transpose((0, 2, 1))).transpose((0, 2, 1))
return before_outs, after_outs, d_outs, p_outs, e_outs, spk_logits
def encoder_infer(
self,
text: paddle.Tensor,
spk_id=None,
alpha: float=1.0,
spk_emb=None,
tone_id=None,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
# input of embedding must be int64
x = paddle.cast(text, 'int64')
# setup batch axis
ilens = paddle.shape(x)[0]
xs = x.unsqueeze(0)
if spk_emb is not None:
spk_emb = spk_emb.unsqueeze(0)
if tone_id is not None:
tone_id = tone_id.unsqueeze(0)
# (1, L, odim)
# use *_ to avoid bug in dygraph to static graph
hs, *_ = self._forward(
xs,
ilens,
is_inference=True,
return_after_enc=True,
alpha=alpha,
spk_emb=spk_emb,
spk_id=spk_id,
tone_id=tone_id)
return hs
def inference(
self,
text: paddle.Tensor,
durations: paddle.Tensor=None,
pitch: paddle.Tensor=None,
energy: paddle.Tensor=None,
alpha: float=1.0,
use_teacher_forcing: bool=False,
spk_emb=None,
spk_id=None,
tone_id=None,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Generate the sequence of features given the sequences of characters.
Args:
text(Tensor(int64)):
Input sequence of characters (T,).
durations(Tensor, optional (int64)):
Groundtruth of duration (T,).
pitch(Tensor, optional):
Groundtruth of token-averaged pitch (T, 1).
energy(Tensor, optional):
Groundtruth of token-averaged energy (T, 1).
alpha(float, optional):
Alpha to control the speed.
use_teacher_forcing(bool, optional):
Whether to use teacher forcing.
If true, groundtruth of duration, pitch and energy will be used.
spk_emb(Tensor, optional, optional):
peaker embedding vector (spk_embed_dim,). (Default value = None)
spk_id(Tensor, optional(int64), optional):
spk ids (1,). (Default value = None)
tone_id(Tensor, optional(int64), optional):
tone ids (T,). (Default value = None)
Returns:
"""
# input of embedding must be int64
x = paddle.cast(text, 'int64')
d, p, e = durations, pitch, energy
# setup batch axis
ilens = paddle.shape(x)[0:1]
xs = x.unsqueeze(0)
if spk_emb is not None:
spk_emb = spk_emb.unsqueeze(0)
if tone_id is not None:
tone_id = tone_id.unsqueeze(0)
if use_teacher_forcing:
# use groundtruth of duration, pitch, and energy
ds = d.unsqueeze(0) if d is not None else None
ps = p.unsqueeze(0) if p is not None else None
es = e.unsqueeze(0) if e is not None else None
# (1, L, odim)
_, outs, d_outs, p_outs, e_outs, _ = self._forward(
xs,
ilens,
ds=ds,
ps=ps,
es=es,
spk_emb=spk_emb,
spk_id=spk_id,
tone_id=tone_id,
is_inference=True)
else:
# (1, L, odim)
_, outs, d_outs, p_outs, e_outs, _ = self._forward(
xs,
ilens,
is_inference=True,
alpha=alpha,
spk_emb=spk_emb,
spk_id=spk_id,
tone_id=tone_id)
return outs[0], d_outs[0], p_outs[0], e_outs[0]
def _integrate_with_spk_embed(self, hs, spk_emb):
"""Integrate speaker embedding with hidden states.
Args:
hs(Tensor):
Batch of hidden state sequences (B, Tmax, adim).
spk_emb(Tensor):
Batch of speaker embeddings (B, spk_embed_dim).
Returns:
"""
if self.spk_embed_integration_type == "add":
# apply projection and then add to hidden states
spk_emb = self.spk_projection(F.normalize(spk_emb))
hs = hs + spk_emb.unsqueeze(1)
elif self.spk_embed_integration_type == "concat":
# one wave `spk_emb` under synthesize, the dim is `1`
if spk_emb.dim() == 1:
spk_emb = spk_emb.unsqueeze(0)
# concat hidden states with spk embeds and then apply projection
spk_emb = F.normalize(spk_emb).unsqueeze(1).expand(
shape=[-1, paddle.shape(hs)[1], -1])
hs = self.spk_projection(paddle.concat([hs, spk_emb], axis=-1))
else:
raise NotImplementedError("support only add or concat.")
return hs
def _integrate_with_tone_embed(self, hs, tone_embs):
"""Integrate speaker embedding with hidden states.
Args:
hs(Tensor):
Batch of hidden state sequences (B, Tmax, adim).
tone_embs(Tensor):
Batch of speaker embeddings (B, Tmax, tone_embed_dim).
Returns:
"""
if self.tone_embed_integration_type == "add":
# apply projection and then add to hidden states
tone_embs = self.tone_projection(F.normalize(tone_embs))
hs = hs + tone_embs
elif self.tone_embed_integration_type == "concat":
# concat hidden states with tone embeds and then apply projection
tone_embs = F.normalize(tone_embs).expand(
shape=[-1, hs.shape[1], -1])
hs = self.tone_projection(paddle.concat([hs, tone_embs], axis=-1))
else:
raise NotImplementedError("support only add or concat.")
return hs
def _source_mask(self, ilens: paddle.Tensor) -> paddle.Tensor:
"""Make masks for self-attention.
Args:
ilens(Tensor):
Batch of lengths (B,).
Returns:
Tensor:
Mask tensor for self-attention. dtype=paddle.bool
Examples:
>>> ilens = [5, 3]
>>> self._source_mask(ilens)
tensor([[[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]]]) bool
"""
x_masks = make_non_pad_mask(ilens)
return x_masks.unsqueeze(-2)
def _reset_parameters(self, init_enc_alpha: float, init_dec_alpha: float):
# initialize alpha in scaled positional encoding
if self.encoder_type == "transformer" and self.use_scaled_pos_enc:
init_enc_alpha = paddle.to_tensor(init_enc_alpha).reshape([1])
self.encoder.embed[-1].alpha = paddle.create_parameter(
shape=init_enc_alpha.shape,
dtype=str(init_enc_alpha.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(
init_enc_alpha))
if self.decoder_type == "transformer" and self.use_scaled_pos_enc:
init_dec_alpha = paddle.to_tensor(init_dec_alpha).reshape([1])
self.decoder.embed[-1].alpha = paddle.create_parameter(
shape=init_dec_alpha.shape,
dtype=str(init_dec_alpha.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(
init_dec_alpha))
class FastSpeech2Inference(nn.Layer):
def __init__(self, normalizer, model):
super().__init__()
self.normalizer = normalizer
self.acoustic_model = model
def forward(self, text, spk_id=None, spk_emb=None):
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
text, spk_id=spk_id, spk_emb=spk_emb)
logmel = self.normalizer.inverse(normalized_mel)
return logmel
class StyleFastSpeech2Inference(FastSpeech2Inference):
def __init__(self,
normalizer,
model,
pitch_stats_path=None,
energy_stats_path=None):
super().__init__(normalizer, model)
if pitch_stats_path:
pitch_mean, pitch_std = np.load(pitch_stats_path)
self.pitch_mean = paddle.to_tensor(pitch_mean)
self.pitch_std = paddle.to_tensor(pitch_std)
if energy_stats_path:
energy_mean, energy_std = np.load(energy_stats_path)
self.energy_mean = paddle.to_tensor(energy_mean)
self.energy_std = paddle.to_tensor(energy_std)
def denorm(self, data, mean, std):
return data * std + mean
def norm(self, data, mean, std):
return (data - mean) / std
def forward(self,
text: paddle.Tensor,
durations: Union[paddle.Tensor, np.ndarray]=None,
durations_scale: Union[int, float]=None,
durations_bias: Union[int, float]=None,
pitch: Union[paddle.Tensor, np.ndarray]=None,
pitch_scale: Union[int, float]=None,
pitch_bias: Union[int, float]=None,
energy: Union[paddle.Tensor, np.ndarray]=None,
energy_scale: Union[int, float]=None,
energy_bias: Union[int, float]=None,
robot: bool=False,
spk_emb=None,
spk_id=None):
"""
Args:
text(Tensor(int64)):
Input sequence of characters (T,).
durations(paddle.Tensor/np.ndarray, optional (int64)):
Groundtruth of duration (T,), this will overwrite the set of durations_scale and durations_bias
durations_scale(int/float, optional):
durations_bias(int/float, optional):
pitch(paddle.Tensor/np.ndarray, optional):
Groundtruth of token-averaged pitch (T, 1), this will overwrite the set of pitch_scale and pitch_bias
pitch_scale(int/float, optional):
In denormed HZ domain.
pitch_bias(int/float, optional):
In denormed HZ domain.
energy(paddle.Tensor/np.ndarray, optional):
Groundtruth of token-averaged energy (T, 1), this will overwrite the set of energy_scale and energy_bias
energy_scale(int/float, optional):
In denormed domain.
energy_bias(int/float, optional):
In denormed domain.
robot(bool) (Default value = False):
spk_emb(Default value = None):
spk_id(Default value = None):
Returns:
Tensor: logmel
"""
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
text,
durations=None,
pitch=None,
energy=None,
spk_emb=spk_emb,
spk_id=spk_id)
# priority: groundtruth > scale/bias > previous output
# set durations
if isinstance(durations, np.ndarray):
durations = paddle.to_tensor(durations)
elif isinstance(durations, paddle.Tensor):
durations = durations
elif durations_scale or durations_bias:
durations_scale = durations_scale if durations_scale is not None else 1
durations_bias = durations_bias if durations_bias is not None else 0
durations = durations_scale * d_outs + durations_bias
else:
durations = d_outs
if robot:
# set normed pitch to zeros have the same effect with set denormd ones to mean
pitch = paddle.zeros(p_outs.shape)
# set pitch, can overwrite robot set
if isinstance(pitch, np.ndarray):
pitch = paddle.to_tensor(pitch)
elif isinstance(pitch, paddle.Tensor):
pitch = pitch
elif pitch_scale or pitch_bias:
pitch_scale = pitch_scale if pitch_scale is not None else 1
pitch_bias = pitch_bias if pitch_bias is not None else 0
p_Hz = paddle.exp(
self.denorm(p_outs, self.pitch_mean, self.pitch_std))
p_HZ = pitch_scale * p_Hz + pitch_bias
pitch = self.norm(paddle.log(p_HZ), self.pitch_mean, self.pitch_std)
else:
pitch = p_outs
# set energy
if isinstance(energy, np.ndarray):
energy = paddle.to_tensor(energy)
elif isinstance(energy, paddle.Tensor):
energy = energy
elif energy_scale or energy_bias:
energy_scale = energy_scale if energy_scale is not None else 1
energy_bias = energy_bias if energy_bias is not None else 0
e_dnorm = self.denorm(e_outs, self.energy_mean, self.energy_std)
e_dnorm = energy_scale * e_dnorm + energy_bias
energy = self.norm(e_dnorm, self.energy_mean, self.energy_std)
else:
energy = e_outs
normalized_mel, d_outs, p_outs, e_outs = self.acoustic_model.inference(
text,
durations=durations,
pitch=pitch,
energy=energy,
use_teacher_forcing=True,
spk_emb=spk_emb,
spk_id=spk_id)
logmel = self.normalizer.inverse(normalized_mel)
return logmel
class FastSpeech2Loss(nn.Layer):
"""Loss function module for FastSpeech2."""
def __init__(self, use_masking: bool=True,
use_weighted_masking: bool=False):
"""Initialize feed-forward Transformer loss module.
Args:
use_masking (bool):
Whether to apply masking for padded part in loss calculation.
use_weighted_masking (bool):
Whether to weighted masking in loss calculation.
"""
assert check_argument_types()
super().__init__()
assert (use_masking != use_weighted_masking) or not use_masking
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
# define criterions
reduction = "none" if self.use_weighted_masking else "mean"
self.l1_criterion = nn.L1Loss(reduction=reduction)
self.mse_criterion = nn.MSELoss(reduction=reduction)
self.duration_criterion = DurationPredictorLoss(reduction=reduction)
self.ce_criterion = nn.CrossEntropyLoss()
def forward(
self,
after_outs: paddle.Tensor,
before_outs: paddle.Tensor,
d_outs: paddle.Tensor,
p_outs: paddle.Tensor,
e_outs: paddle.Tensor,
ys: paddle.Tensor,
ds: paddle.Tensor,
ps: paddle.Tensor,
es: paddle.Tensor,
ilens: paddle.Tensor,
olens: paddle.Tensor,
spk_logits: paddle.Tensor=None,
spk_ids: paddle.Tensor=None,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor,
paddle.Tensor, ]:
"""Calculate forward propagation.
Args:
after_outs(Tensor):
Batch of outputs after postnets (B, Lmax, odim).
before_outs(Tensor):
Batch of outputs before postnets (B, Lmax, odim).
d_outs(Tensor):
Batch of outputs of duration predictor (B, Tmax).
p_outs(Tensor):
Batch of outputs of pitch predictor (B, Tmax, 1).
e_outs(Tensor):
Batch of outputs of energy predictor (B, Tmax, 1).
ys(Tensor):
Batch of target features (B, Lmax, odim).
ds(Tensor):
Batch of durations (B, Tmax).
ps(Tensor):
Batch of target token-averaged pitch (B, Tmax, 1).
es(Tensor):
Batch of target token-averaged energy (B, Tmax, 1).
ilens(Tensor):
Batch of the lengths of each input (B,).
olens(Tensor):
Batch of the lengths of each target (B,).
spk_logits(Option[Tensor]):
Batch of outputs after speaker classifier (B, Lmax, num_spk)
spk_ids(Option[Tensor]):
Batch of target spk_id (B,)
Returns:
"""
speaker_loss = 0.0
# apply mask to remove padded part
if self.use_masking:
out_masks = make_non_pad_mask(olens).unsqueeze(-1)
before_outs = before_outs.masked_select(
out_masks.broadcast_to(before_outs.shape))
if after_outs is not None:
after_outs = after_outs.masked_select(
out_masks.broadcast_to(after_outs.shape))
ys = ys.masked_select(out_masks.broadcast_to(ys.shape))
duration_masks = make_non_pad_mask(ilens)
d_outs = d_outs.masked_select(
duration_masks.broadcast_to(d_outs.shape))
ds = ds.masked_select(duration_masks.broadcast_to(ds.shape))
pitch_masks = make_non_pad_mask(ilens).unsqueeze(-1)
p_outs = p_outs.masked_select(
pitch_masks.broadcast_to(p_outs.shape))
e_outs = e_outs.masked_select(
pitch_masks.broadcast_to(e_outs.shape))
ps = ps.masked_select(pitch_masks.broadcast_to(ps.shape))
es = es.masked_select(pitch_masks.broadcast_to(es.shape))
if spk_logits is not None and spk_ids is not None:
batch_size = spk_ids.shape[0]
spk_ids = paddle.repeat_interleave(spk_ids, spk_logits.shape[1],
None)
spk_logits = paddle.reshape(spk_logits,
[-1, spk_logits.shape[-1]])
mask_index = spk_logits.abs().sum(axis=1) != 0
spk_ids = spk_ids[mask_index]
spk_logits = spk_logits[mask_index]
# calculate loss
l1_loss = self.l1_criterion(before_outs, ys)
if after_outs is not None:
l1_loss += self.l1_criterion(after_outs, ys)
duration_loss = self.duration_criterion(d_outs, ds)
pitch_loss = self.mse_criterion(p_outs, ps)
energy_loss = self.mse_criterion(e_outs, es)
if spk_logits is not None and spk_ids is not None:
speaker_loss = self.ce_criterion(spk_logits, spk_ids) / batch_size
# make weighted mask and apply it
if self.use_weighted_masking:
out_masks = make_non_pad_mask(olens).unsqueeze(-1)
out_weights = out_masks.cast(dtype=paddle.float32) / out_masks.cast(
dtype=paddle.float32).sum(
axis=1, keepdim=True)
out_weights /= ys.shape[0] * ys.shape[2]
duration_masks = make_non_pad_mask(ilens)
duration_weights = (duration_masks.cast(dtype=paddle.float32) /
duration_masks.cast(dtype=paddle.float32).sum(
axis=1, keepdim=True))
duration_weights /= ds.shape[0]
# apply weight
l1_loss = l1_loss.multiply(out_weights)
l1_loss = l1_loss.masked_select(
out_masks.broadcast_to(l1_loss.shape)).sum()
duration_loss = (duration_loss.multiply(duration_weights)
.masked_select(duration_masks).sum())
pitch_masks = duration_masks.unsqueeze(-1)
pitch_weights = duration_weights.unsqueeze(-1)
pitch_loss = pitch_loss.multiply(pitch_weights)
pitch_loss = pitch_loss.masked_select(
pitch_masks.broadcast_to(pitch_loss.shape)).sum()
energy_loss = energy_loss.multiply(pitch_weights)
energy_loss = energy_loss.masked_select(
pitch_masks.broadcast_to(energy_loss.shape)).sum()
return l1_loss, duration_loss, pitch_loss, energy_loss, speaker_loss