You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/models/wav2vec2/processing/speech_augmentation.py

903 lines
32 KiB

# Copyright (c) 2023 speechbrain Authors. All Rights Reserved.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from speechbrain(https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/processing/speech_augmentation.py)
"""Classes for mutating speech data for data augmentation.
This module provides classes that produce realistic distortions of speech
data for the purpose of training speech processing models. The list of
distortions includes adding noise, adding reverberation, changing speed,
and more. All the classes are of type `torch.nn.Module`. This gives the
possibility to have end-to-end differentiability and
backpropagate the gradient through them. In addition, all operations
are expected to be performed on the GPU (where available) for efficiency.
Authors
* Peter Plantinga 2020
"""
import math
import paddle
import paddle.nn as nn
from paddlespeech.s2t.models.wav2vec2.processing.signal_processing import compute_amplitude
from paddlespeech.s2t.models.wav2vec2.processing.signal_processing import convolve1d
from paddlespeech.s2t.models.wav2vec2.processing.signal_processing import notch_filter
class SpeedPerturb(nn.Layer):
"""Slightly speed up or slow down an audio signal.
Resample the audio signal at a rate that is similar to the original rate,
to achieve a slightly slower or slightly faster signal. This technique is
outlined in the paper: "Audio Augmentation for Speech Recognition"
Arguments
---------
orig_freq : int
The frequency of the original signal.
speeds : list
The speeds that the signal should be changed to, as a percentage of the
original signal (i.e. `speeds` is divided by 100 to get a ratio).
perturb_prob : float
The chance that the batch will be speed-
perturbed. By default, every batch is perturbed.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> perturbator = SpeedPerturb(orig_freq=16000, speeds=[90])
>>> clean = signal.unsqueeze(0)
>>> perturbed = perturbator(clean)
>>> clean.shape
paddle.shape([1, 52173])
>>> perturbed.shape
paddle.shape([1, 46956])
"""
def __init__(
self,
orig_freq,
speeds=[90, 100, 110],
perturb_prob=1.0, ):
super().__init__()
self.orig_freq = orig_freq
self.speeds = speeds
self.perturb_prob = perturb_prob
# Initialize index of perturbation
self.samp_index = 0
# Initialize resamplers
self.resamplers = []
for speed in self.speeds:
config = {
"orig_freq": self.orig_freq,
"new_freq": self.orig_freq * speed // 100,
}
self.resamplers.append(Resample(**config))
def forward(self, waveform):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
lengths : tensor
Shape should be a single dimension, `[batch]`.
Returns
-------
Tensor of shape `[batch, time]` or `[batch, time, channels]`.
"""
# Don't perturb (return early) 1-`perturb_prob` portion of the batches
if paddle.rand([1]) > self.perturb_prob:
return waveform.clone()
# Perform a random perturbation
self.samp_index = paddle.randint(len(self.speeds), shape=(1, ))[0]
perturbed_waveform = self.resamplers[self.samp_index](waveform)
return perturbed_waveform
class Resample(nn.Layer):
"""This class resamples an audio signal using sinc-based interpolation.
It is a modification of the `resample` function from torchaudio
(https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html)
Arguments
---------
orig_freq : int
the sampling frequency of the input signal.
new_freq : int
the new sampling frequency after this operation is performed.
lowpass_filter_width : int
Controls the sharpness of the filter, larger numbers result in a
sharper filter, but they are less efficient. Values from 4 to 10 are allowed.
"""
def __init__(
self,
orig_freq=16000,
new_freq=16000,
lowpass_filter_width=6, ):
super().__init__()
self.orig_freq = orig_freq
self.new_freq = new_freq
self.lowpass_filter_width = lowpass_filter_width
# Compute rate for striding
self._compute_strides()
assert self.orig_freq % self.conv_stride == 0
assert self.new_freq % self.conv_transpose_stride == 0
def _compute_strides(self):
"""Compute the phases in polyphase filter.
(almost directly from torchaudio.compliance.kaldi)
"""
# Compute new unit based on ratio of in/out frequencies
base_freq = math.gcd(self.orig_freq, self.new_freq)
input_samples_in_unit = self.orig_freq // base_freq
self.output_samples = self.new_freq // base_freq
# Store the appropriate stride based on the new units
self.conv_stride = input_samples_in_unit
self.conv_transpose_stride = self.output_samples
def forward(self, waveforms):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
lengths : tensor
Shape should be a single dimension, `[batch]`.
Returns
-------
Tensor of shape `[batch, time]` or `[batch, time, channels]`.
"""
if not hasattr(self, "first_indices"):
self._indices_and_weights(waveforms)
# Don't do anything if the frequencies are the same
if self.orig_freq == self.new_freq:
return waveforms
unsqueezed = False
if len(waveforms.shape) == 2:
waveforms = waveforms.unsqueeze(1)
unsqueezed = True
elif len(waveforms.shape) == 3:
waveforms = waveforms.transpose([0, 2, 1])
else:
raise ValueError("Input must be 2 or 3 dimensions")
# Do resampling
resampled_waveform = self._perform_resample(waveforms)
if unsqueezed:
resampled_waveform = resampled_waveform.squeeze(1)
else:
resampled_waveform = resampled_waveform.transpose([0, 2, 1])
return resampled_waveform
def _perform_resample(self, waveforms):
"""Resamples the waveform at the new frequency.
This matches Kaldi's OfflineFeatureTpl ResampleWaveform which uses a
LinearResample (resample a signal at linearly spaced intervals to
up/downsample a signal). LinearResample (LR) means that the output
signal is at linearly spaced intervals (i.e the output signal has a
frequency of `new_freq`). It uses sinc/bandlimited interpolation to
upsample/downsample the signal.
(almost directly from torchaudio.compliance.kaldi)
https://ccrma.stanford.edu/~jos/resample/
Theory_Ideal_Bandlimited_Interpolation.html
https://github.com/kaldi-asr/kaldi/blob/master/src/feat/resample.h#L56
Arguments
---------
waveforms : tensor
The batch of audio signals to resample.
Returns
-------
The waveforms at the new frequency.
"""
# Compute output size and initialize
batch_size, num_channels, wave_len = waveforms.shape
window_size = self.weights.shape[1]
tot_output_samp = self._output_samples(wave_len)
resampled_waveform = paddle.zeros(
(batch_size, num_channels, tot_output_samp))
# self.weights = self.weights.to(waveforms.device)
# Check weights are on correct device
# if waveforms.device != self.weights.device:
# self.weights = self.weights.to(waveforms.device)
# eye size: (num_channels, num_channels, 1)
eye = paddle.eye(num_channels).unsqueeze(2)
# Iterate over the phases in the polyphase filter
for i in range(self.first_indices.shape[0]):
wave_to_conv = waveforms
first_index = int(self.first_indices[i].item())
if first_index >= 0:
# trim the signal as the filter will not be applied
# before the first_index
wave_to_conv = wave_to_conv[..., first_index:]
# pad the right of the signal to allow partial convolutions
# meaning compute values for partial windows (e.g. end of the
# window is outside the signal length)
max_index = (tot_output_samp - 1) // self.output_samples
end_index = max_index * self.conv_stride + window_size
current_wave_len = wave_len - first_index
right_padding = max(0, end_index + 1 - current_wave_len)
left_padding = max(0, -first_index)
wave_to_conv = paddle.nn.functional.pad(
wave_to_conv, (left_padding, right_padding), data_format='NCL')
conv_wave = paddle.nn.functional.conv1d(
x=wave_to_conv,
weight=self.weights[i].repeat(num_channels, 1, 1),
stride=self.conv_stride,
groups=num_channels, )
# we want conv_wave[:, i] to be at
# output[:, i + n*conv_transpose_stride]
dilated_conv_wave = paddle.nn.functional.conv1d_transpose(
conv_wave, eye, stride=self.conv_transpose_stride)
# pad dilated_conv_wave so it reaches the output length if needed.
left_padding = i
previous_padding = left_padding + dilated_conv_wave.shape[-1]
right_padding = max(0, tot_output_samp - previous_padding)
dilated_conv_wave = paddle.nn.functional.pad(
dilated_conv_wave, (left_padding, right_padding),
data_format='NCL')
dilated_conv_wave = dilated_conv_wave[..., :tot_output_samp]
resampled_waveform += dilated_conv_wave
return resampled_waveform
def _output_samples(self, input_num_samp):
"""Based on LinearResample::GetNumOutputSamples.
LinearResample (LR) means that the output signal is at
linearly spaced intervals (i.e the output signal has a
frequency of ``new_freq``). It uses sinc/bandlimited
interpolation to upsample/downsample the signal.
(almost directly from torchaudio.compliance.kaldi)
Arguments
---------
input_num_samp : int
The number of samples in each example in the batch.
Returns
-------
Number of samples in the output waveform.
"""
# For exact computation, we measure time in "ticks" of 1.0 / tick_freq,
# where tick_freq is the least common multiple of samp_in and
# samp_out.
samp_in = int(self.orig_freq)
samp_out = int(self.new_freq)
tick_freq = abs(samp_in * samp_out) // math.gcd(samp_in, samp_out)
ticks_per_input_period = tick_freq // samp_in
# work out the number of ticks in the time interval
# [ 0, input_num_samp/samp_in ).
interval_length = input_num_samp * ticks_per_input_period
if interval_length <= 0:
return 0
ticks_per_output_period = tick_freq // samp_out
# Get the last output-sample in the closed interval,
# i.e. replacing [ ) with [ ]. Note: integer division rounds down.
# See http://en.wikipedia.org/wiki/Interval_(mathematics) for an
# explanation of the notation.
last_output_samp = interval_length // ticks_per_output_period
# We need the last output-sample in the open interval, so if it
# takes us to the end of the interval exactly, subtract one.
if last_output_samp * ticks_per_output_period == interval_length:
last_output_samp -= 1
# First output-sample index is zero, so the number of output samples
# is the last output-sample plus one.
num_output_samp = last_output_samp + 1
return num_output_samp
def _indices_and_weights(self, waveforms):
"""Based on LinearResample::SetIndexesAndWeights
Retrieves the weights for resampling as well as the indices in which
they are valid. LinearResample (LR) means that the output signal is at
linearly spaced intervals (i.e the output signal has a frequency
of ``new_freq``). It uses sinc/bandlimited interpolation to
upsample/downsample the signal.
Returns
-------
- the place where each filter should start being applied
- the filters to be applied to the signal for resampling
"""
# Lowpass filter frequency depends on smaller of two frequencies
min_freq = min(self.orig_freq, self.new_freq)
lowpass_cutoff = 0.99 * 0.5 * min_freq
assert lowpass_cutoff * 2 <= min_freq
window_width = self.lowpass_filter_width / (2.0 * lowpass_cutoff)
assert lowpass_cutoff < min(self.orig_freq, self.new_freq) / 2
output_t = paddle.arange(
start=0.0, end=self.output_samples, dtype='int64')
output_t /= self.new_freq
min_t = output_t - window_width
max_t = output_t + window_width
min_input_index = paddle.ceil(min_t * self.orig_freq)
max_input_index = paddle.floor(max_t * self.orig_freq)
num_indices = max_input_index - min_input_index + 1
max_weight_width = num_indices.max()
j = paddle.arange(max_weight_width)
input_index = min_input_index.unsqueeze(1) + j.unsqueeze(0)
delta_t = (input_index / self.orig_freq) - output_t.unsqueeze(1)
weights = paddle.zeros_like(delta_t)
inside_window_indices = delta_t.abs() < (window_width)
# raised-cosine (Hanning) window with width `window_width`
weights[inside_window_indices] = 0.5 * (1 + paddle.cos(
2 * math.pi * lowpass_cutoff / self.lowpass_filter_width *
delta_t[inside_window_indices]))
t_eq_zero_indices = delta_t == 0.0
t_not_eq_zero_indices = ~t_eq_zero_indices
# sinc filter function
weights[t_not_eq_zero_indices] *= paddle.sin(
2 * math.pi * lowpass_cutoff * delta_t[t_not_eq_zero_indices]) / (
math.pi * delta_t[t_not_eq_zero_indices])
# limit of the function at t = 0
weights[t_eq_zero_indices] *= 2 * lowpass_cutoff
# size (output_samples, max_weight_width)
weights /= self.orig_freq
self.first_indices = min_input_index
self.weights = weights
class DropFreq(nn.Layer):
"""This class drops a random frequency from the signal.
The purpose of this class is to teach models to learn to rely on all parts
of the signal, not just a few frequency bands.
Arguments
---------
drop_freq_low : float
The low end of frequencies that can be dropped,
as a fraction of the sampling rate / 2.
drop_freq_high : float
The high end of frequencies that can be
dropped, as a fraction of the sampling rate / 2.
drop_count_low : int
The low end of number of frequencies that could be dropped.
drop_count_high : int
The high end of number of frequencies that could be dropped.
drop_width : float
The width of the frequency band to drop, as
a fraction of the sampling_rate / 2.
drop_prob : float
The probability that the batch of signals will have a frequency
dropped. By default, every batch has frequencies dropped.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> dropper = DropFreq()
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> dropped_signal = dropper(signal.unsqueeze(0))
"""
def __init__(
self,
drop_freq_low=1e-14,
drop_freq_high=1,
drop_count_low=1,
drop_count_high=2,
drop_width=0.05,
drop_prob=1, ):
super().__init__()
self.drop_freq_low = drop_freq_low
self.drop_freq_high = drop_freq_high
self.drop_count_low = drop_count_low
self.drop_count_high = drop_count_high
self.drop_width = drop_width
self.drop_prob = drop_prob
def forward(self, waveforms):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
Returns
-------
Tensor of shape `[batch, time]` or `[batch, time, channels]`.
"""
# Don't drop (return early) 1-`drop_prob` portion of the batches
dropped_waveform = waveforms.clone()
if paddle.rand([1]) > self.drop_prob:
return dropped_waveform
# Add channels dimension
if len(waveforms.shape) == 2:
dropped_waveform = dropped_waveform.unsqueeze(-1)
# Pick number of frequencies to drop
drop_count = paddle.randint(
low=self.drop_count_low,
high=self.drop_count_high + 1,
shape=(1, ), )
# Filter parameters
filter_length = 101
pad = filter_length // 2
# Start with delta function
drop_filter = paddle.zeros([1, filter_length, 1])
drop_filter[0, pad, 0] = 1
if drop_count.shape == 0:
# Pick a frequency to drop
drop_range = self.drop_freq_high - self.drop_freq_low
drop_frequency = (
paddle.rand(drop_count) * drop_range + self.drop_freq_low)
# Subtract each frequency
for frequency in drop_frequency:
notch_kernel = notch_filter(
frequency,
filter_length,
self.drop_width, )
drop_filter = convolve1d(drop_filter, notch_kernel, pad)
# Apply filter
dropped_waveform = convolve1d(dropped_waveform, drop_filter, pad)
# Remove channels dimension if added
return dropped_waveform.squeeze(-1)
class DropChunk(nn.Layer):
"""This class drops portions of the input signal.
Using `DropChunk` as an augmentation strategy helps a models learn to rely
on all parts of the signal, since it can't expect a given part to be
present.
Arguments
---------
drop_length_low : int
The low end of lengths for which to set the
signal to zero, in samples.
drop_length_high : int
The high end of lengths for which to set the
signal to zero, in samples.
drop_count_low : int
The low end of number of times that the signal
can be dropped to zero.
drop_count_high : int
The high end of number of times that the signal
can be dropped to zero.
drop_start : int
The first index for which dropping will be allowed.
drop_end : int
The last index for which dropping will be allowed.
drop_prob : float
The probability that the batch of signals will
have a portion dropped. By default, every batch
has portions dropped.
noise_factor : float
The factor relative to average amplitude of an utterance
to use for scaling the white noise inserted. 1 keeps
the average amplitude the same, while 0 inserts all 0's.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> dropper = DropChunk(drop_start=100, drop_end=200, noise_factor=0.)
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> signal = signal.unsqueeze(0) # [batch, time, channels]
>>> length = paddle.ones([1])
>>> dropped_signal = dropper(signal, length)
>>> float(dropped_signal[:, 150])
0.0
"""
def __init__(
self,
drop_length_low=100,
drop_length_high=1000,
drop_count_low=1,
drop_count_high=10,
drop_start=0,
drop_end=None,
drop_prob=1,
noise_factor=0.0, ):
super().__init__()
self.drop_length_low = drop_length_low
self.drop_length_high = drop_length_high
self.drop_count_low = drop_count_low
self.drop_count_high = drop_count_high
self.drop_start = drop_start
self.drop_end = drop_end
self.drop_prob = drop_prob
self.noise_factor = noise_factor
# Validate low < high
if drop_length_low > drop_length_high:
raise ValueError("Low limit must not be more than high limit")
if drop_count_low > drop_count_high:
raise ValueError("Low limit must not be more than high limit")
# Make sure the length doesn't exceed end - start
if drop_end is not None and drop_end >= 0:
if drop_start > drop_end:
raise ValueError("Low limit must not be more than high limit")
drop_range = drop_end - drop_start
self.drop_length_low = min(drop_length_low, drop_range)
self.drop_length_high = min(drop_length_high, drop_range)
def forward(self, waveforms, lengths):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
lengths : tensor
Shape should be a single dimension, `[batch]`.
Returns
-------
Tensor of shape `[batch, time]` or
`[batch, time, channels]`
"""
# Reading input list
lengths = (lengths * waveforms.shape[1]).long()
batch_size = waveforms.shape[0]
dropped_waveform = waveforms.clone()
# Don't drop (return early) 1-`drop_prob` portion of the batches
if paddle.rand([1]) > self.drop_prob:
return dropped_waveform
# Store original amplitude for computing white noise amplitude
clean_amplitude = compute_amplitude(waveforms, lengths.unsqueeze(1))
# Pick a number of times to drop
drop_times = paddle.randint(
low=self.drop_count_low,
high=self.drop_count_high + 1,
shape=(batch_size, ), )
# Iterate batch to set mask
for i in range(batch_size):
if drop_times[i] == 0:
continue
# Pick lengths
length = paddle.randint(
low=self.drop_length_low,
high=self.drop_length_high + 1,
shape=(drop_times[i], ), )
# Compute range of starting locations
start_min = self.drop_start
if start_min < 0:
start_min += lengths[i]
start_max = self.drop_end
if start_max is None:
start_max = lengths[i]
if start_max < 0:
start_max += lengths[i]
start_max = max(0, start_max - length.max())
# Pick starting locations
start = paddle.randint(
low=start_min,
high=start_max + 1,
shape=(drop_times[i], ), )
end = start + length
# Update waveform
if not self.noise_factor:
for j in range(drop_times[i]):
dropped_waveform[i, start[j]:end[j]] = 0.0
else:
# Uniform distribution of -2 to +2 * avg amplitude should
# preserve the average for normalization
noise_max = 2 * clean_amplitude[i] * self.noise_factor
for j in range(drop_times[i]):
# zero-center the noise distribution
noise_vec = paddle.rand([length[j]])
noise_vec = 2 * noise_max * noise_vec - noise_max
dropped_waveform[i, start[j]:end[j]] = noise_vec
return dropped_waveform
class SpecAugment(paddle.nn.Layer):
"""An implementation of the SpecAugment algorithm.
Reference:
https://arxiv.org/abs/1904.08779
Arguments
---------
time_warp : bool
Whether applying time warping.
time_warp_window : int
Time warp window.
time_warp_mode : str
Interpolation mode for time warping (default "bicubic").
freq_mask : bool
Whether applying freq mask.
freq_mask_width : int or tuple
Freq mask width range.
n_freq_mask : int
Number of freq mask.
time_mask : bool
Whether applying time mask.
time_mask_width : int or tuple
Time mask width range.
n_time_mask : int
Number of time mask.
replace_with_zero : bool
If True, replace masked value with 0, else replace masked value with mean of the input tensor.
Example
-------
>>> aug = SpecAugment()
>>> a = paddle.rand([8, 120, 80])
>>> a = aug(a)
>>> print(a.shape)
paddle.Size([8, 120, 80])
"""
def __init__(
self,
time_warp=True,
time_warp_window=5,
time_warp_mode="bicubic",
freq_mask=True,
freq_mask_width=(0, 20),
n_freq_mask=2,
time_mask=True,
time_mask_width=(0, 100),
n_time_mask=2,
replace_with_zero=True, ):
super().__init__()
assert (
time_warp or freq_mask or time_mask
), "at least one of time_warp, time_mask, or freq_mask should be applied"
self.apply_time_warp = time_warp
self.time_warp_window = time_warp_window
self.time_warp_mode = time_warp_mode
self.freq_mask = freq_mask
if isinstance(freq_mask_width, int):
freq_mask_width = (0, freq_mask_width)
self.freq_mask_width = freq_mask_width
self.n_freq_mask = n_freq_mask
self.time_mask = time_mask
if isinstance(time_mask_width, int):
time_mask_width = (0, time_mask_width)
self.time_mask_width = time_mask_width
self.n_time_mask = n_time_mask
self.replace_with_zero = replace_with_zero
def forward(self, x):
"""Takes in input a tensors and returns an augmented one."""
if self.apply_time_warp:
x = self.time_warp(x)
if self.freq_mask:
x = self.mask_along_axis(x, dim=2)
if self.time_mask:
x = self.mask_along_axis(x, dim=1)
return x
def time_warp(self, x):
"""Time warping with paddle.nn.functional.interpolate"""
original_size = x.shape
window = self.time_warp_window
# 2d interpolation requires 4D or higher dimension tensors
# x: (Batch, Time, Freq) -> (Batch, 1, Time, Freq)
if x.dim() == 3:
x = x.unsqueeze(1)
time = x.shape[2]
if time - window <= window:
return x.reshape([*original_size])
# compute center and corresponding window
c = paddle.randint(window, time - window, (1, ))[0]
w = paddle.randint(c - window, c + window, (1, ))[0] + 1
left = paddle.nn.functional.interpolate(
x[:, :, :c],
(w, x.shape[3]),
mode=self.time_warp_mode,
align_corners=True, )
right = paddle.nn.functional.interpolate(
x[:, :, c:],
(time - w, x.shape[3]),
mode=self.time_warp_mode,
align_corners=True, )
x[:, :, :w] = left
x[:, :, w:] = right
return x.reshape([*original_size])
def mask_along_axis(self, x, dim):
"""Mask along time or frequency axis.
Arguments
---------
x : tensor
Input tensor.
dim : int
Corresponding dimension to mask.
"""
original_size = x.shape
if x.dim() == 4:
x = x.reshape([-1, x.shape[2], x.shape[3]])
batch, time, fea = x.shape
if dim == 1:
D = time
n_mask = self.n_time_mask
width_range = self.time_mask_width
else:
D = fea
n_mask = self.n_freq_mask
width_range = self.freq_mask_width
mask_len = paddle.randint(width_range[0], width_range[1],
(batch, n_mask)).unsqueeze(2)
mask_pos = paddle.randint(0, max(1, D - mask_len.max()),
(batch, n_mask)).unsqueeze(2)
# compute masks
arange = paddle.arange(end=D).reshape([1, 1, -1])
mask = (mask_pos <= arange) * (arange < (mask_pos + mask_len))
mask = mask.any(axis=1)
if dim == 1:
mask = mask.unsqueeze(2)
else:
mask = mask.unsqueeze(1)
if self.replace_with_zero:
val = 0.0
else:
val = x.mean()
# same to x.masked_fill_(mask, val)
y = paddle.full(x.shape, val, x.dtype)
x = paddle.where(mask, y, x)
return x.reshape([*original_size])
class TimeDomainSpecAugment(nn.Layer):
"""A time-domain approximation of the SpecAugment algorithm.
This augmentation module implements three augmentations in
the time-domain.
1. Drop chunks of the audio (zero amplitude or white noise)
2. Drop frequency bands (with band-drop filters)
3. Speed peturbation (via resampling to slightly different rate)
Arguments
---------
perturb_prob : float from 0 to 1
The probability that a batch will have speed perturbation applied.
drop_freq_prob : float from 0 to 1
The probability that a batch will have frequencies dropped.
drop_chunk_prob : float from 0 to 1
The probability that a batch will have chunks dropped.
speeds : list of ints
A set of different speeds to use to perturb each batch.
See ``speechbrain.processing.speech_augmentation.SpeedPerturb``
sample_rate : int
Sampling rate of the input waveforms.
drop_freq_count_low : int
Lowest number of frequencies that could be dropped.
drop_freq_count_high : int
Highest number of frequencies that could be dropped.
drop_chunk_count_low : int
Lowest number of chunks that could be dropped.
drop_chunk_count_high : int
Highest number of chunks that could be dropped.
drop_chunk_length_low : int
Lowest length of chunks that could be dropped.
drop_chunk_length_high : int
Highest length of chunks that could be dropped.
drop_chunk_noise_factor : float
The noise factor used to scale the white noise inserted, relative to
the average amplitude of the utterance. Default 0 (no noise inserted).
Example
-------
>>> inputs = paddle.randn([10, 16000])
>>> feature_maker = TimeDomainSpecAugment(speeds=[80])
>>> feats = feature_maker(inputs, paddle.ones(10))
>>> feats.shape
paddle.shape([10, 12800])
"""
def __init__(
self,
perturb_prob=1.0,
drop_freq_prob=1.0,
drop_chunk_prob=1.0,
speeds=[95, 100, 105],
sample_rate=16000,
drop_freq_count_low=0,
drop_freq_count_high=3,
drop_chunk_count_low=0,
drop_chunk_count_high=5,
drop_chunk_length_low=1000,
drop_chunk_length_high=2000,
drop_chunk_noise_factor=0, ):
super().__init__()
self.speed_perturb = SpeedPerturb(
perturb_prob=perturb_prob, orig_freq=sample_rate, speeds=speeds)
self.drop_freq = DropFreq(
drop_prob=drop_freq_prob,
drop_count_low=drop_freq_count_low,
drop_count_high=drop_freq_count_high, )
self.drop_chunk = DropChunk(
drop_prob=drop_chunk_prob,
drop_count_low=drop_chunk_count_low,
drop_count_high=drop_chunk_count_high,
drop_length_low=drop_chunk_length_low,
drop_length_high=drop_chunk_length_high,
noise_factor=drop_chunk_noise_factor, )
def forward(self, waveforms, lengths):
"""Returns the distorted waveforms.
Arguments
---------
waveforms : tensor
The waveforms to distort
"""
# Augmentation
with paddle.no_grad():
waveforms = self.speed_perturb(waveforms)
waveforms = self.drop_freq(waveforms)
waveforms = self.drop_chunk(waveforms, lengths)
return waveforms