You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/models/wav2vec2/modules/modeling_wav2vec2.py

1186 lines
50 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Paddle Wav2Vec2 model."""
from dataclasses import dataclass
from typing import Optional
from typing import Tuple
from typing import Union
import numpy as np
import paddle
from paddle import nn
from paddlespeech.s2t.models.wav2vec2.modules.activations import ACT2FN
from paddlespeech.s2t.models.wav2vec2.modules.modeling_outputs import BaseModelOutput
from paddlespeech.s2t.models.wav2vec2.modules.modeling_outputs import ModelOutput
from paddlespeech.s2t.models.wav2vec2.modules.modeling_outputs import Wav2Vec2BaseModelOutput
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
@dataclass
class Wav2Vec2ForPreTrainingOutput(ModelOutput):
"""
Output type of [`Wav2Vec2ForPreTraining`], with potential hidden states and attentions.
Args:
loss (*optional*, returned when `sample_negative_indices` are passed, `paddle.Tensor` of shape `(1,)`):
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
projected_states (`paddle.Tensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
projected quantized states.
projected_quantized_states (`paddle.Tensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
target vectors for contrastive loss.
hidden_states (`tuple(paddle.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `paddle.Tensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(paddle.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `paddle.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `paddle.Tensor` of shape `(1,)`):
The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `paddle.Tensor` of shape `(1,)`):
The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
"""
loss: Optional[paddle.Tensor] = None
projected_states: paddle.Tensor = None
projected_quantized_states: paddle.Tensor = None
codevector_perplexity: paddle.Tensor = None
hidden_states: Optional[Tuple[paddle.Tensor]] = None
attentions: Optional[Tuple[paddle.Tensor]] = None
contrastive_loss: Optional[paddle.Tensor] = None
diversity_loss: Optional[paddle.Tensor] = None
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[paddle.Tensor]=None,
min_masks: int=0, ) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`")
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (attention_mask.sum(-1).detach().tolist()
if attention_mask is not None else
[sequence_length for _ in range(batch_size)])
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=np.bool_)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)),
num_masked_span,
replace=False)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate([
spec_aug_mask_idx,
np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) *
dummy_mask_idx
])
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None],
(batch_size, max_num_masked_span, mask_length))
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(
(batch_size, max_num_masked_span * mask_length))
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (
batch_size, max_num_masked_span, mask_length)).reshape(
(batch_size, max_num_masked_span * mask_length))
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs >
sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
def _sample_negative_indices(features_shape: Tuple,
num_negatives: int,
mask_time_indices: Optional[np.ndarray]=None):
"""
Sample `num_negatives` vectors from feature vectors.
"""
batch_size, sequence_length = features_shape
# generate indices of the positive vectors themselves, repeat them `num_negatives` times
sequence_length_range = np.arange(sequence_length)
# get `num_negatives` random vector indices from the same utterance
sampled_negative_indices = np.zeros(
shape=(batch_size, sequence_length, num_negatives), dtype=np.int32)
mask_time_indices = (mask_time_indices.astype(np.bool_)
if mask_time_indices is not None else
np.ones(features_shape, dtype=np.bool_))
for batch_idx in range(batch_size):
high = mask_time_indices[batch_idx].sum() - 1
mapped_masked_indices = sequence_length_range[mask_time_indices[
batch_idx]]
feature_indices = np.broadcast_to(
np.arange(high + 1)[:, None], (high + 1, num_negatives))
sampled_indices = np.random.randint(
0, high, size=(high + 1, num_negatives))
# avoid sampling the same positive vector, but keep the distribution uniform
sampled_indices[sampled_indices >= feature_indices] += 1
# remap to actual indices
sampled_negative_indices[batch_idx][mask_time_indices[
batch_idx]] = mapped_masked_indices[sampled_indices]
# correct for batch size
sampled_negative_indices[batch_idx] += batch_idx * sequence_length
return sampled_negative_indices
class Wav2Vec2NoLayerNormConvLayer(nn.Layer):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1D(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias_attr=config.conv_bias, )
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class Wav2Vec2LayerNormConvLayer(nn.Layer):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1D(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias_attr=config.conv_bias, )
self.layer_norm = nn.LayerNorm(self.out_conv_dim)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose([0, 2, 1])
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose([0, 2, 1])
hidden_states = self.activation(hidden_states)
return hidden_states
class Wav2Vec2GroupNormConvLayer(nn.Layer):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1D(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias_attr=config.conv_bias, )
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(
num_groups=self.out_conv_dim, num_channels=self.out_conv_dim)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class Wav2Vec2PositionalConvEmbedding(nn.Layer):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1D(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups, )
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
self.padding = Wav2Vec2SamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose([0, 2, 1])
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose([0, 2, 1])
return hidden_states
class Wav2Vec2SamePadLayer(nn.Layer):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, :-self.num_pad_remove]
return hidden_states
class Wav2Vec2FeatureEncoder(nn.Layer):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [Wav2Vec2GroupNormConvLayer(config, layer_id=0)] + [
Wav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1)
for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [
Wav2Vec2LayerNormConvLayer(config, layer_id=i)
for i in range(config.num_feat_extract_layers)
]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.LayerList(conv_layers)
self.gradient_checkpointing = False
def _freeze_parameters(self):
for param in self.parameters():
param.trainable = False
def forward(self, input_values):
hidden_states = input_values[:, None]
for conv_layer in self.conv_layers:
hidden_states = conv_layer(hidden_states)
return hidden_states
class Wav2Vec2FeatureProjection(nn.Layer):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(
config.conv_dim[-1], epsilon=config.layer_norm_eps)
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states, norm_hidden_states
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Wav2Vec2
class Wav2Vec2Attention(nn.Layer):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float=0.0,
is_decoder: bool=False,
bias: bool=True, ):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads}).")
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias_attr=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias_attr=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias_attr=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias_attr=bias)
def _shape(self, tensor: paddle.Tensor, seq_len: int, bsz: int):
return paddle.reshape(tensor, (bsz, seq_len, self.num_heads,
self.head_dim)).transpose([0, 2, 1, 3])
def forward(
self,
hidden_states: paddle.Tensor,
key_value_states: Optional[paddle.Tensor]=None,
past_key_value: Optional[Tuple[paddle.Tensor]]=None,
attention_mask: Optional[paddle.Tensor]=None,
layer_head_mask: Optional[paddle.Tensor]=None,
output_attentions: bool=False, ) -> Tuple[paddle.Tensor, Optional[
paddle.Tensor], Optional[Tuple[paddle.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.shape
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = paddle.concat([past_key_value[0], key_states], axis=2)
value_states = paddle.concat(
[past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(paddle.Tensor, paddle.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(paddle.Tensor, paddle.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len,
bsz).reshape(proj_shape)
key_states = key_states.reshape(proj_shape)
value_states = value_states.reshape(proj_shape)
src_len = key_states.shape[1]
attn_weights = paddle.bmm(query_states, key_states.transpose([0, 2, 1]))
if attn_weights.shape != [bsz * self.num_heads, tgt_len, src_len]:
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.shape}")
if attention_mask is not None:
if attention_mask.shape != [bsz, 1, tgt_len, src_len]:
raise ValueError(
f"Attention mask should be of size {[bsz, 1, tgt_len, src_len]}, but is {attention_mask.shape}"
)
attn_weights = attn_weights.reshape(bsz, self.num_heads, tgt_len,
src_len) + attention_mask
attn_weights = attn_weights.reshape(bsz * self.num_heads, tgt_len,
src_len)
attn_weights = nn.functional.softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
if layer_head_mask.shape != [
self.num_heads,
]:
raise ValueError(
f"Head mask for a single layer should be of size {[self.num_heads,]}, but is"
f" {layer_head_mask.shape}")
attn_weights = layer_head_mask.reshape(
(1, -1, 1, 1)) * attn_weights.reshape(
(bsz, self.num_heads, tgt_len, src_len))
attn_weights = attn_weights.reshape(
(bsz * self.num_heads, tgt_len, src_len))
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.reshape(
(bsz, self.num_heads, tgt_len, src_len))
attn_weights = attn_weights_reshaped.reshape(
(bsz * self.num_heads, tgt_len, src_len))
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training)
attn_output = paddle.bmm(attn_probs, value_states)
if attn_output.shape != [bsz * self.num_heads, tgt_len, self.head_dim]:
raise ValueError(
f"`attn_output` should be of size {[bsz, self.num_heads, tgt_len, self.head_dim]}, but is"
f" {attn_output.shape}")
attn_output = attn_output.reshape(
(bsz, self.num_heads, tgt_len, self.head_dim))
attn_output = attn_output.transpose([0, 2, 1, 3])
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape((bsz, tgt_len, self.embed_dim))
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class Wav2Vec2FeedForward(nn.Layer):
def __init__(self, config):
super().__init__()
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
self.intermediate_dense = nn.Linear(config.hidden_size,
config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.output_dense = nn.Linear(config.intermediate_size,
config.hidden_size)
self.output_dropout = nn.Dropout(config.hidden_dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
class Wav2Vec2EncoderLayer(nn.Layer):
def __init__(self, config):
super().__init__()
self.attention = Wav2Vec2Attention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False, )
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(
config.hidden_size, epsilon=config.layer_norm_eps)
self.feed_forward = Wav2Vec2FeedForward(config)
self.final_layer_norm = nn.LayerNorm(
config.hidden_size, epsilon=config.layer_norm_eps)
def forward(self,
hidden_states,
attention_mask=None,
output_attentions=False):
attn_residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states, )
if output_attentions:
outputs += (attn_weights, )
return outputs
class Wav2Vec2EncoderLayerStableLayerNorm(nn.Layer):
def __init__(self, config):
super().__init__()
self.attention = Wav2Vec2Attention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False, )
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(
config.hidden_size, epsilon=config.layer_norm_eps)
self.feed_forward = Wav2Vec2FeedForward(config)
self.final_layer_norm = nn.LayerNorm(
config.hidden_size, epsilon=config.layer_norm_eps)
def forward(self,
hidden_states,
attention_mask=None,
output_attentions=False):
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.attention(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(
self.final_layer_norm(hidden_states))
outputs = (hidden_states, )
if output_attentions:
outputs += (attn_weights, )
return outputs
class Wav2Vec2Encoder(nn.Layer):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(
config.hidden_size, epsilon=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.LayerList([
Wav2Vec2EncoderLayer(config)
for _ in range(config.num_hidden_layers)
])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True, ):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens output 0
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(
1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
dtype=hidden_states.dtype)
attention_mask = attention_mask * np.iinfo(np.float32).min
attention_mask = attention_mask.expand(attention_mask.shape[0], 1,
attention_mask.shape[-1],
attention_mask.shape[-1])
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
#deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
skip_the_layer = True if self.training and (
dropout_probability < self.config.layerdrop) else False
if not skip_the_layer: # or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
# create gradient checkpointing function
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1], )
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
if not return_dict:
return tuple(
v
for v in
[hidden_states, all_hidden_states, all_self_attentions]
if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions, )
class Wav2Vec2EncoderStableLayerNorm(nn.Layer):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(
config.hidden_size, epsilon=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.LayerList([
Wav2Vec2EncoderLayerStableLayerNorm(config)
for _ in range(config.num_hidden_layers)
])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True, ):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens are not attended to
expand_attention_mask = attention_mask.unsqueeze(
-1).repeat_interleave(
hidden_states.shape[2], axis=2)
hidden_states[~expand_attention_mask] = 0
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
dtype=hidden_states.dtype)
attention_mask = attention_mask * np.iinfo(np.float32).min
attention_mask = attention_mask.expand(attention_mask.shape[0], 1,
attention_mask.shape[-1],
attention_mask.shape[-1])
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states)
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
skip_the_layer = True if self.training and (
dropout_probability < self.config.layerdrop) else False
if not skip_the_layer: # or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
if self.gradient_checkpointing and self.training:
# create gradient checkpointing function
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1], )
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
if not return_dict:
return tuple(
v
for v in
[hidden_states, all_hidden_states, all_self_attentions]
if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions, )
class Wav2Vec2GumbelVectorQuantizer(nn.Layer):
"""
Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
def __init__(self, config):
super().__init__()
self.num_groups = config.num_codevector_groups
self.num_vars = config.num_codevectors_per_group
if config.codevector_dim % self.num_groups != 0:
raise ValueError(
f"`config.codevector_dim {config.codevector_dim} must be divisible "
f"by `config.num_codevector_groups` {self.num_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = paddle.static.create_parameter(
shape=[
1, self.num_groups * self.num_vars,
config.codevector_dim // self.num_groups
],
dtype='float32')
self.weight_proj = nn.Linear(config.conv_dim[-1],
self.num_groups * self.num_vars)
# can be decayed for training
self.temperature = 2
@staticmethod
def _compute_perplexity(probs, mask=None):
if mask is not None:
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
probs = paddle.where(mask_extended, probs, paddle.zeros_like(probs))
marginal_probs = probs.sum(dim=0) / mask.sum()
else:
marginal_probs = probs.mean(dim=0)
perplexity = paddle.exp(-paddle.sum(
marginal_probs * paddle.log(marginal_probs + 1e-7), dim=-1)).sum()
return perplexity
def forward(self, hidden_states, mask_time_indices=None):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.reshape(
(batch_size * sequence_length * self.num_groups, -1))
if self.training:
# sample code vector probs via gumbel in differentiateable way
codevector_probs = nn.functional.gumbel_softmax(
hidden_states.float(), tau=self.temperature,
hard=True).type_as(hidden_states)
# compute perplexity
codevector_soft_dist = paddle.softmax(
hidden_states.reshape((batch_size * sequence_length,
self.num_groups, -1)).float(),
axis=-1)
perplexity = self._compute_perplexity(codevector_soft_dist,
mask_time_indices)
else:
# take argmax in non-differentiable way
# comptute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(dim=-1)
codevector_probs = hidden_states.new_zeros(
*hidden_states.shape).scatter_(-1,
codevector_idx.reshape((-1, 1)),
1.0)
codevector_probs = codevector_probs.reshape(
(batch_size * sequence_length, self.num_groups, -1))
perplexity = self._compute_perplexity(codevector_probs,
mask_time_indices)
codevector_probs = codevector_probs.reshape(
(batch_size * sequence_length, -1))
# use probs to retrieve codevectors
codevectors_per_group = codevector_probs.unsqueeze(
-1) * self.codevectors
codevectors = codevectors_per_group.reshape(
(batch_size * sequence_length, self.num_groups, self.num_vars, -1))
codevectors = codevectors.sum(-2).reshape(
(batch_size, sequence_length, -1))
return codevectors, perplexity
class Wav2Vec2Adapter(nn.Layer):
def __init__(self, config):
super().__init__()
# feature dim might need to be down-projected
if config.output_hidden_size != config.hidden_size:
self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size)
else:
self.proj = self.proj_layer_norm = None
self.layers = nn.LayerList(
Wav2Vec2AdapterLayer(config)
for _ in range(config.num_adapter_layers))
self.layerdrop = config.layerdrop
def forward(self, hidden_states):
# down project hidden_states if necessary
if self.proj is not None and self.proj_layer_norm is not None:
hidden_states = self.proj(hidden_states)
hidden_states = self.proj_layer_norm(hidden_states)
hidden_states = hidden_states.transpose([0, 2, 1])
for layer in self.layers:
layerdrop_prob = np.random.random()
if not self.training or (layerdrop_prob > self.layerdrop):
hidden_states = layer(hidden_states)
hidden_states = hidden_states.transpose([0, 2, 1])
return hidden_states
class Wav2Vec2AdapterLayer(nn.Layer):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1D(
config.output_hidden_size,
2 * config.output_hidden_size,
config.adapter_kernel_size,
stride=config.adapter_stride,
padding=1, )
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = nn.functional.glu(hidden_states, axis=1)
return hidden_states
class Wav2Vec2Model(nn.Layer):
def __init__(self, config):
super().__init__()
self.config = config
self.feature_extractor = Wav2Vec2FeatureEncoder(config)
self.feature_projection = Wav2Vec2FeatureProjection(config)
# model only needs masking vector if mask prob is > 0.0
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
# self.masked_spec_embed = nn.Parameter(paddle.Tensor(config.hidden_size).uniform_())
#self.masked_spec_embed = paddle.uniform([config.hidden_size])
self.masked_spec_embed = paddle.static.create_parameter(
shape=[config.hidden_size],
dtype='float32',
default_initializer=paddle.nn.initializer.Uniform(
low=0, high=1.0))
if config.do_stable_layer_norm:
self.encoder = Wav2Vec2EncoderStableLayerNorm(config)
else:
self.encoder = Wav2Vec2Encoder(config)
self.adapter = Wav2Vec2Adapter(config) if config.add_adapter else None
# Initialize weights and apply final processing
self.post_init()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.feature_extractor._freeze_parameters()
def _mask_hidden_states(
self,
hidden_states: paddle.Tensor,
mask_time_indices: Optional[paddle.Tensor]=None,
attention_mask: Optional[paddle.Tensor]=None, ):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.shape
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(
hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks, )
mask_time_indices = paddle.to_tensor(
mask_time_indices, dtype=paddle.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(
hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks, )
mask_feature_indices = paddle.to_tensor(
mask_feature_indices, dtype=paddle.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(
-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
def forward(
self,
input_values: Optional[paddle.Tensor],
attention_mask: Optional[paddle.Tensor]=None,
mask_time_indices: Optional[paddle.Tensor]=None,
output_attentions: Optional[bool]=None,
output_hidden_states: Optional[bool]=None,
return_dict: Optional[bool]=None,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose([0, 2, 1])
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False)
hidden_states, extract_features = self.feature_projection(
extract_features)
hidden_states = self._mask_hidden_states(
hidden_states,
mask_time_indices=mask_time_indices,
attention_mask=attention_mask)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict, )
hidden_states = encoder_outputs[0]
if self.adapter is not None:
hidden_states = self.adapter(hidden_states)
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions, )
def post_init(self):
"""
A method executed at the end of each Transformer model initialization, to execute code that needs the model's
modules properly initialized (such as weight initialization).
"""
# self.init_weights()
# self._backward_compatibility_gradient_checkpointing()
pass
class Wav2Vec2ConfigPure():
model_type = "wav2vec2"
def __init__(self, config):
self.output_attentions = False
self.output_hidden_states = False
self.use_return_dict = True
self.hidden_size = config.hidden_size
self.feat_extract_norm = config.feat_extract_norm
self.feat_extract_activation = config.feat_extract_activation
self.conv_dim = config.conv_dim
self.conv_stride = config.conv_stride
self.conv_kernel = config.conv_kernel
self.conv_bias = config.conv_bias
self.num_conv_pos_embeddings = config.num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = config.num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
self.num_hidden_layers = config.num_hidden_layers
self.intermediate_size = config.intermediate_size
self.hidden_act = config.hidden_act
self.num_attention_heads = config.num_attention_heads
self.hidden_dropout = config.hidden_dropout
self.attention_dropout = config.attention_dropout
self.activation_dropout = config.activation_dropout
self.feat_proj_dropout = config.feat_proj_dropout
self.final_dropout = config.final_dropout
self.layerdrop = config.layerdrop
self.layer_norm_eps = config.layer_norm_eps
self.initializer_range = config.initializer_range
self.do_stable_layer_norm = config.do_stable_layer_norm
self.use_weighted_layer_sum = config.use_weighted_layer_sum
if ((len(self.conv_stride) != self.num_feat_extract_layers) or
(len(self.conv_kernel) != self.num_feat_extract_layers) or
(len(self.conv_dim) != self.num_feat_extract_layers)):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = config.apply_spec_augment
self.mask_time_prob = config.mask_time_prob
self.mask_time_length = config.mask_time_length
self.mask_time_min_masks = config.mask_time_min_masks
self.mask_feature_prob = config.mask_feature_prob
self.mask_feature_length = config.mask_feature_length
self.mask_feature_min_masks = config.mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
self.num_codevectors_per_group = config.num_codevectors_per_group
self.num_codevector_groups = config.num_codevector_groups
self.contrastive_logits_temperature = config.contrastive_logits_temperature
self.feat_quantizer_dropout = config.feat_quantizer_dropout
self.num_negatives = config.num_negatives
self.codevector_dim = config.codevector_dim
self.proj_codevector_dim = config.proj_codevector_dim
self.diversity_loss_weight = config.diversity_loss_weight
# adapter
self.add_adapter = config.add_adapter
self.adapter_kernel_size = config.adapter_kernel_size
self.adapter_stride = config.adapter_stride
self.num_adapter_layers = config.num_adapter_layers
self.output_hidden_size = config.output_hidden_size or config.hidden_size
@property
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)