You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/tests/benchmark/audio/melspectrogram.py

110 lines
3.3 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import urllib.request
import librosa
import numpy as np
import paddle
import torch
import torchaudio
import paddlespeech.audio
wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
if not os.path.isfile(os.path.basename(wav_url)):
urllib.request.urlretrieve(wav_url, os.path.basename(wav_url))
waveform, sr = paddlespeech.audio.load(
os.path.abspath(os.path.basename(wav_url)))
waveform_tensor = paddle.to_tensor(waveform).unsqueeze(0)
waveform_tensor_torch = torch.from_numpy(waveform).unsqueeze(0)
# Feature conf
mel_conf = {
'sr': sr,
'n_fft': 512,
'hop_length': 128,
'n_mels': 40,
}
mel_conf_torchaudio = {
'sample_rate': sr,
'n_fft': 512,
'hop_length': 128,
'n_mels': 40,
'norm': 'slaney',
'mel_scale': 'slaney',
}
def enable_cpu_device():
paddle.set_device('cpu')
def enable_gpu_device():
paddle.set_device('gpu')
mel_extractor = paddlespeech.audio.features.MelSpectrogram(
**mel_conf, f_min=0.0, dtype=waveform_tensor.dtype)
def melspectrogram():
return mel_extractor(waveform_tensor).squeeze(0)
def test_melspect_cpu(benchmark):
enable_cpu_device()
feature_audio = benchmark(melspectrogram)
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
np.testing.assert_array_almost_equal(
feature_librosa, feature_audio, decimal=3)
def test_melspect_gpu(benchmark):
enable_gpu_device()
feature_audio = benchmark(melspectrogram)
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
np.testing.assert_array_almost_equal(
feature_librosa, feature_audio, decimal=3)
mel_extractor_torchaudio = torchaudio.transforms.MelSpectrogram(
**mel_conf_torchaudio, f_min=0.0)
def melspectrogram_torchaudio():
return mel_extractor_torchaudio(waveform_tensor_torch).squeeze(0)
def test_melspect_cpu_torchaudio(benchmark):
global waveform_tensor_torch, mel_extractor_torchaudio
mel_extractor_torchaudio = mel_extractor_torchaudio.to('cpu')
waveform_tensor_torch = waveform_tensor_torch.to('cpu')
feature_audio = benchmark(melspectrogram_torchaudio)
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
np.testing.assert_array_almost_equal(
feature_librosa, feature_audio, decimal=3)
def test_melspect_gpu_torchaudio(benchmark):
global waveform_tensor_torch, mel_extractor_torchaudio
mel_extractor_torchaudio = mel_extractor_torchaudio.to('cuda')
waveform_tensor_torch = waveform_tensor_torch.to('cuda')
feature_torchaudio = benchmark(melspectrogram_torchaudio)
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
np.testing.assert_array_almost_equal(
feature_librosa, feature_torchaudio.cpu(), decimal=3)